

180 E 4th St, Suite 300 • Chico, CA 95928 • 530-894-8400 530-894-9069
www.scitechsoft.com • ftp.scitechsoft.com • sales@scitechsoft.com

SciTech SNAP
Graphics Architecture

Version: 3.0

Revision Date: Thursday, July 20, 2006

by Kendall Bennett

This document defines the interface for an operating system portable, native-size loadable
device driver architecture that will provide access to accelerated graphics hardware. The
specification itself targets any personal computer environment regardless of the processor
type, however a particular binary driver is only compatible with the processor it was
compiled for. Some of the accelerator functions supported include hardware cursors, multi
buffering, solid and transparent off-screen bitmaps, rectangle filling and line drawing.

Intellectual Property
Copyright © 1997-2005 SciTech Software, Inc - All Rights Reserved. Duplication and
distribution of this document is strictly prohibited without prior, written consent from
SciTech Software, Inc.

While every precaution has been taken in the preparation of this document, SciTech Software
assume no responsibility for errors or omissions, and make no warranties, expressed or
implied, of functionality or suitability for any purpose.

Trademarks
All trademarks used in this document are property of their respective owners.

 VBE/AF Supplemental Functions Page ii

Table of Contents

Introduction.. 2
What is SciTech SNAP? .. 2
What is SciTech SNAP Graphics Architecture? .. 3

Installing SciTech SNAP Graphics ... 4
Downloading and Installing SciTech SNAP Graphics... 4
Makefile Utilities Configuration ... 5

DOS/Windows hosted tools (start-sdk.bat) ...5
Win32 hosted tools (start-sdk.bat)...7
Windows hosted tools for RTTarget-32 (start-sdk.bat) ...7
OS/2 hosted tools (start-sdk.cmd) ...8
Linux hosted tools (start-sdk.linux) ..9
QNX hosted tools (start-sdk.qnx)..10

Compiling SciTech SNAP Graphics ... 11
Compiling release and debug builds ..11
Compiling the sample programs..11
Setting up Your Compiler Configuration ...12

Using the Makefile Utilities ... 14
Standard Makefile Targets ..14
Standard Makefile Options..15

CauseWay DOS Extender Support ... 16
Connecting with Perforce... 16

Download a Perforce Client...16
Setting up your environment for anonymous access...16
Setting up your client mapping...17
Syncing up for the first time..18
Using Perforce from the command line ...19

Programming with SNAP Graphics .. 20
Loading and Initializing SciTech SNAP Graphics.. 20

Runtime Library Standard Locations..20
Enumerating Installed Devices and Loading a Driver..21
Locating and Calling Device Driver Functions ..21
Querying Device Configuration Information..22

Working With Display Modes... 22
Finding Available Display Modes ...22
Refresh Rate Control ...23
Using Custom Display Modes ..24

2D Coordinate System .. 24
Multi Buffering ...26
Accessing Offscreen Video Memory..27
Virtual Buffer Scrolling...29
Palette Programming During Double Buffering...29
Integer Coordinates ...29
Color Values ..29

Direct Framebuffer Access ... 30
Hardware Triple Buffering .. 30
Using the Buffer Manager .. 31

SciTech SNAP, Graphics Architecture i

Contents

Hardware Video Overlay Functions .. 32
Stereoscopic Liquid Crystal Shutter Glasses ... 33

Refresh rates and stereoscopic imaging ...34
Software driven display start address swapping ...34

Developing for Maximum Compatibility .. 34
Support Both 15-bit and 16-bits Per Pixel Modes...35
Support Both 24-bit and 32-bits per Pixel Modes ...35
Do Not Assume Support for Double Scanned Modes ...35

Developing for Specific Hardware in Embedded Systems ... 35
Customize SNAP Graphics configuration files for run-time image..36
Optimize SNAP Graphics options for fastest loading time...36

Graphics Device Driver Overview... 39
Overview of Global Functions... 39

Driver Loading and Initialization Functions ..39
Display Mode Management Functions ...39
Rectangle Arithmetic Functions..40
Monitor Detection Functions..40
Monitor Database Functions...40
Monitor Command Set Functions...40

Overview of Queried Function Groups ... 41
Display Driver Initialization Functions ...41
Device Driver Control Functions..42
2D Rendering State Functions..42
2D Drawing Functions ...42
Buffer Manager Functions ..44
Complex Region Management Functions ...44
Hardware Video Overlay Functions ...44
Hardware Cursor Functions ...45

Graphics Device Driver Reference ... 47
External Functions... 48

DDC_init ..49
DDC_initExt...50
DDC_readEDID ...51
DDC_writeEDID..52
EDID_parse...53
GA_addMode ..54
GA_addRefresh..55
GA_computeCRTCTimings..56
GA_delMode..57
GA_detectPnPMonitor ...58
GA_disableVBEMode..59
GA_disjointRect ..60
GA_emptyRect ..61
GA_enableVBEMode ..62
GA_enumerateDevices ..63
GA_equalRect..64
GA_errorMsg ..65
GA_getCRTCTimings...66
GA_getCurrentRef2d ..67
GA_getDaysLeft..68
GA_getDisplaySerialNo..69
GA_getDisplayUserName...70

SciTech SNAP, Graphics Architecture ii

Contents

GA_getFakePCIID ..71
GA_getGlobalOptions...72
GA_getInternalName..73
GA_getLicensedDevices ..74
GA_getMaxRefreshRate..75
GA_getParsedEDID..76
GA_getSNAPConfigPath..77
GA_insetRect ..78
GA_isLiteVersion..79
GA_isOEMVersion...80
GA_isSharedDriverLoaded..81
GA_isSimpleRegion ..82
GA_loadDriver..83
GA_loadInGUI..84
GA_loadModeProfile ...85
GA_loadRef2d ...86
GA_loadRegionMgr ..87
GA_offsetRect..88
GA_programMTRRegisters ..89
GA_ptInRect ...90
GA_queryFunctions..91
GA_readGlobalOptions...93
GA_registerLicense ...94
GA_restoreCRTCTimings...95
GA_saveCRTCTimings...96
GA_saveGlobalOptions...97
GA_saveModeProfile...98
GA_saveMonitorInfo...99
GA_saveOptions ...100
GA_sectRect ..101
GA_sectRectCoord ..102
GA_sectRectFast ...103
GA_sectRectFastCoord..104
GA_setActiveDevice..105
GA_setCRTCTimings ...106
GA_setDefaultRefresh...107
GA_setGlobalOptions ...108
GA_setMinimumDriverVersion...109
GA_softStereoExit...110
GA_softStereoGetFlipStatus ...111
GA_softStereoInit..112
GA_softStereoOff ..113
GA_softStereoOn ..114
GA_softStereoScheduleFlip ...115
GA_softStereoWaitTillFlipped ..116
GA_status..117
GA_unionRect...118
GA_unionRectCoord...119
GA_unloadDriver ...120
GA_unloadRef2d...121
GA_unloadRegionMgr..122
GA_useDoubleScan...123
MCS_begin..124

SciTech SNAP, Graphics Architecture iii

Contents

MCS_beginExt ..125
MCS_enableControl ..126
MCS_end...127
MCS_getCapabilitiesString ..128
MCS_getControlMax..129
MCS_getControlValue..130
MCS_getControlValues ..131
MCS_getSelfTestReport ..132
MCS_getTimingReport...133
MCS_isControlSupported...134
MCS_resetControl...135
MCS_saveCurrentSettings ...136
MCS_setControlValue ..137
MCS_setControlValues...138
MDBX_close ...139
MDBX_first ..140
MDBX_flush...141
MDBX_getErrCode...142
MDBX_getErrorMsg..143
MDBX_importINF ...144
MDBX_insert..145
MDBX_last ...146
MDBX_next..147
MDBX_open ...148
MDBX_prev..149
MDBX_update ..150
PE_freeLibrary ..151
PE_getError ..152
PE_getFileSize...153
PE_getProcAddress...154
PE_loadLibrary..155
PE_loadLibraryExt..156
PE_loadLibraryMGL...157
REF2D_loadDriver ...158
REF2D_queryFunctions ...159
REF2D_unloadDriver...160

Type Definitions .. 161
DDC_ChannelsType ...162
DDC_DPMSStatesType ...163
DDC_SCIFlagsType ...164
DDC_errCode..165
EDID_detailedTiming...166
EDID_displayTypes ..167
EDID_flags..168
EDID_maxResCodes ...169
EDID_record ...170
EDID_signalLevels ...172
EDID_standardTiming ...173
EDID_timingTypes...174
GA_2DRenderFuncs...175

BitBlt ...176
BitBltBM...177
BitBltColorPatt ...179

SciTech SNAP, Graphics Architecture iv

Contents

BitBltColorPattBM ...180
BitBltColorPattLin..181
BitBltColorPattSys..182
BitBltFx...183
BitBltFxBM...185
BitBltFxLin ...187
BitBltFxSys ...189
BitBltFxTest ..191
BitBltLin ...192
BitBltPatt ..194
BitBltPattBM..195
BitBltPattLin...196
BitBltPattSys ..197
BitBltPlaneMasked..198
BitBltPlaneMaskedBM ...199
BitBltPlaneMaskedLin ..201
BitBltPlaneMaskedSys..203
BitBltSys ...205
ClipEllipse ...206
ClipMonoImageLSBBM..207
ClipMonoImageLSBLin ..208
ClipMonoImageLSBSys ..209
ClipMonoImageMSBBM ..210
ClipMonoImageMSBLin...211
ClipMonoImageMSBSys...212
DrawBresenhamLine...213
DrawBresenhamStippleLine ...215
DrawBresenhamStyleLine...217
DrawClippedBresenhamLine ..219
DrawClippedBresenhamStippleLine ...221
DrawClippedBresenhamStyleLine ..223
DrawClippedLineInt ...225
DrawClippedStippleLineInt..226
DrawClippedStyleLineInt ...227
DrawColorPattEllipseList...228
DrawColorPattFatEllipseList ...229
DrawColorPattRect...231
DrawColorPattScanList..232
DrawColorPattTrap ..233
DrawEllipse...234
DrawEllipseList ..235
DrawFatEllipseList ...236
DrawLineInt ...238
DrawPattEllipseList..239
DrawPattFatEllipseList ..240
DrawPattRect ...242
DrawPattScanList...243
DrawPattTrap...244
DrawRect ..245
DrawRectExt...246
DrawRectLin...247
DrawScanList ...248
DrawStippleLineInt ..249

SciTech SNAP, Graphics Architecture v

Contents

DrawStyleLineInt ...250
DrawTrap..251
DstTransBlt ..252
DstTransBltBM ..253
DstTransBltLin...255
DstTransBltSys...257
GetBitmapBM ...259
GetBitmapSys..260
GetPixel...261
PutMonoImageLSBBM...262
PutMonoImageLSBLin ...263
PutMonoImageLSBSys ...264
PutMonoImageMSBBM...265
PutMonoImageMSBLin..266
PutMonoImageMSBSys ...267
PutPixel...269
SrcTransBlt ...270
SrcTransBltBM...271
SrcTransBltLin ...273
SrcTransBltSys ...275
StretchBlt ..277
StretchBltBM ..279
StretchBltLin...281
StretchBltSys...283
UpdateScreen ..285

GA_2DStateFuncs ..286
BuildTranslateVector ..287
DisableDirectAccess..288
EnableDirectAccess...289
IsIdle..290
Set8x8ColorPattern...291
Set8x8MonoPattern ..292
SetAlphaValue ..293
SetBackColor ...294
SetBlendFunc ..295
SetDrawBuffer ..296
SetForeColor..297
SetLineStipple ...298
SetLineStippleCount ...299
SetLineStyle ..300
SetMix...301
SetPlaneMask..302
Use8x8ColorPattern..303
Use8x8MonoPattern...304
Use8x8TransColorPattern ..305
Use8x8TransMonoPattern ...306
WaitTillIdle ...307

GA_AccelFlagsType..308
GA_AttributeExtFlagsType..309
GA_AttributeFlagsType..310
GA_BitBltFxFlagsType...314
GA_BresenhamLineFlagsType ..317
GA_BufferFlagsType...318

SciTech SNAP, Graphics Architecture vi

Contents

GA_CRTCInfo ..321
GA_CRTCInfoFlagsType..323
GA_CertifyFlagsType ...324
GA_DPMSFuncs ..326

DPMSdetect..327
DPMSsetState...328

GA_LCDUseBIOSFlagsType..329
GA_MakeVisibleBufferFlagsType...330
GA_OutputFlagsType...331
GA_SCIFuncs ...332

SCIbegin..333
SCIdetect ...334
SCIend...335
SCIreadSCL...336
SCIreadSDA ...337
SCIwriteSCL ...338
SCIwriteSDA..339

GA_TVParams..340
GA_VBEFuncs..341

GetPaletteData ..342
Set8BitDAC ..343
SetBytesPerLine ..344
SetPaletteData...345

GA_VideoBufferFormatsType...346
GA_VideoOutputFlagsType ...349
GA_WorkAroundsFlagsType..351
GA_blendFuncType ..354
GA_bltFx...357
GA_buf ..359
GA_buffer..361
GA_bufferFuncs ..362

AllocBuffer ..363
BitBltBuf ...364
BitBltColorPattBuf..365
BitBltFxBuf ...366
BitBltPattBuf ..368
BitBltPlaneMaskedBuf..369
DrawRectBuf...370
DstTransBltBuf...371
FlipToBuffer ..372
FlipToStereoBuffer ..373
FreeBuffer..374
GetClipper ...375
GetFlipStatus ..376
GetFlippableBuffer ..377
GetPrimaryBuffer..378
InitBuffers ...379
LockBuffer ...380
SetActiveBuffer ...381
SetClipper..382
SrcTransBltBuf ...383
StretchBltBuf...384
UnlockBuffer ...386

SciTech SNAP, Graphics Architecture vii

Contents

UpdateCache ...387
UpdateFromCache...388
WaitTillFlipped ...389

GA_busType..390
GA_certifyChipInfo...391
GA_certifyInfo...392
GA_clipper ..393
GA_clipperFuncs...394

CreateClipper ..395
DestroyClipper ..396
GetClipList ..397
IsClipListChanged...398

GA_color ...399
GA_colorCursor ..400
GA_colorCursor256 ..401
GA_colorCursorRGB ..402
GA_colorCursorRGBA ...403
GA_colorPattern ...404
GA_colorPattern_1 ...405
GA_colorPattern_16 ...406
GA_colorPattern_24 ...407
GA_colorPattern_32 ...408
GA_colorPattern_4 ...409
GA_colorPattern_8 ...410
GA_configInfo ...411
GA_cursorFuncs ...412

BeginAccess...413
EndAccess ...414
IsHardwareCursor ..415
SetColorCursor..416
SetColorCursor256..417
SetColorCursorRGB..418
SetColorCursorRGBA...419
SetCursorPos...420
SetMonoCursor...421
SetMonoCursorColor ..422
ShowCursor...423

GA_devCtx..424
GA_driverFuncs..429

EnableStereoMode...430
GetCurrentScanLine ...431
GetDisplayStartStatus..432
GetGammaCorrectData ..433
GetGammaCorrectDataExt...434
GetPaletteData ..435
GetPaletteDataExt ..436
GetVSyncWidth..437
IsVSync...438
SetBank ...439
SetDisplayStart...440
SetDisplayStartXY ...442
SetGammaCorrectData ...443
SetGammaCorrectDataExt ...444

SciTech SNAP, Graphics Architecture viii

Contents

SetPaletteData...445
SetPaletteDataExt...446
SetStereoDisplayStart ...447
SetVSyncWidth...448
WaitVSync..449

GA_funcGroupsType ..450
GA_globalOptions...452
GA_initFuncs..454

AlignLinearBuffer ...455
GetActiveHead ..456
GetCRTCTimings ...457
GetCertifyInfo ...458
GetClosestPixelClock ..459
GetConfigInfo..461
GetCurrentRefreshRate...462
GetCurrentVideoModeInfo ...463
GetCustomVideoModeInfo..464
GetCustomVideoModeInfoExt ..465
GetDisplayOutput ..466
GetMonitorInfo ...467
GetNumberOfHeads..468
GetOptions..469
GetUniqueFilename ..470
GetVideoMode...471
GetVideoModeInfo ..472
GetVideoModeInfoExt...473
PerformDisplaySwitch ..474
PollForDisplaySwitch ...475
SaveCRTCTimings ...476
SaveRestoreState ...477
SetActiveHead...478
SetCRTCTimings..479
SetCustomVideoMode...480
SetDisplayOutput...482
SetGlobalRefresh ...483
SetModeProfile ..484
SetMonitorInfo..485
SetOptions...486
SetRef2dPointer ..487
SetSoftwareRenderFuncs ..488
SetVideoMode ...489
SwitchPhysicalResolution...492

GA_largeInteger..493
GA_layout ...494
GA_loaderFuncs..495

InitDriver..496
QueryFunctions ..497
UnloadDriver ..499

GA_mixCodesType..500
GA_mode...502
GA_modeFlagsType ..503
GA_modeInfo ..504
GA_modeProfile ..510

SciTech SNAP, Graphics Architecture ix

Contents

GA_monitor ..511
GA_monitorFlagsType..512
GA_monoCursor ...513
GA_multiHeadType ..514
GA_options..515
GA_palette...521
GA_paletteExt...522
GA_pattern..523
GA_pixelFormat..524
GA_recMode ...527
GA_rect ...528
GA_region ...529
GA_regionFuncs ...530

ClearRegion...531
CopyIntoRegion ..532
CopyRegion ...533
DiffRegion ...534
DiffRegionRect..535
FreeRegion...536
IsEmptyRegion..537
IsEqualRegion ...538
NewRectRegion...539
NewRegion..540
OffsetRegion..541
OptimizeRegion ..542
PtInRegion ..543
SectRegion...544
SectRegionRect..545
TraverseRegion..546
UnionRegion ...547
UnionRegionOfs ...548
UnionRegionRect ..549

GA_rop3CodesType...550
GA_segment ..555
GA_span..556
GA_stipple...557
GA_trap...558
GA_videoFuncs ...559

AllocVideoBuffer ...560
EndVideoFrame...561
FreeVideoBuffer...562
SetVideoColorKey ...563
SetVideoOutput ..564
StartVideoFrame ...565

GA_videoInf ..566
MCS_controlsType..567
MCS_polarityFlagsType ...569
MDBX_errCodes...570
N_errorType ..571
N_fix32..572
N_flt32 ..573
N_int16 ...574
N_int32 ...575

SciTech SNAP, Graphics Architecture x

Contents

N_int8 ...576
N_physAddr ..577
N_uint16 ...578
N_uint32 ...579
N_uint8 ...580
PE_errorCodes...581
REF2D_driver...582

DrawRectExtSW...583
ForceSoftwareOnly ...584
PostSwitchPhysicalResolution..585
QueryFunctions ..586
RotateBitmap...587
SetColorCompareMask..588
SetDrawBuffer ..589
SetDrawSurface ..590

PM Library Reference .. 591
External Functions... 592

CPU_getProcessorName ...593
CPU_getProcessorSpeed ...594
CPU_getProcessorSpeedInHZ ..595
CPU_getProcessorType...596
CPU_have3DNow...597
CPU_haveMMX ...598
CPU_haveRDTSC...599
CPU_haveSSE...600
EVT_allowLEDS...601
EVT_asciiCode ..602
EVT_flush ...603
EVT_getCodePage...604
EVT_getHeartBeatCallback ..605
EVT_getMousePos..606
EVT_getNext ..607
EVT_halt ...608
EVT_isKeyDown...609
EVT_joyIsPresent ...610
EVT_joySetCenter...611
EVT_joySetLowerRight ..612
EVT_joySetUpperLeft ...613
EVT_peekNext ..614
EVT_pollJoystick...615
EVT_post...616
EVT_repeatCount ...617
EVT_scanCode ..618
EVT_setCodePage ...619
EVT_setHeartBeatCallback ...620
EVT_setMousePos ..621
EVT_setUserEventFilter...622
LZTimerCount ..623
LZTimerCountExt...624
LZTimerLap ..625
LZTimerLapExt...626
LZTimerOff ...627
LZTimerOffExt ...628

SciTech SNAP, Graphics Architecture xi

Contents

LZTimerOn ...629
LZTimerOnExt ...630
PCI_accessReg...631
PCI_enumerate..632
PCI_getNumDevices...633
PCI_readRegBlock...634
PCI_writeRegBlock ...635
PE_freeLibrary ..636
PE_getError ..637
PE_getFileSize...638
PE_getProcAddress...639
PE_loadLibrary..640
PE_loadLibraryExt..641
PE_loadLibraryMGL...642
PM_agpCommitPhysical...643
PM_agpExit ..644
PM_agpFreePhysical...645
PM_agpInit ...646
PM_agpReleasePhysical..647
PM_agpReservePhysical ...648
PM_allocLockedMem ..649
PM_allocPage..650
PM_allocRealSeg...651
PM_backslash..652
PM_blockUntilTimeout ..653
PM_callRealMode ...654
PM_calloc..655
PM_closeConsole...656
PM_doSuspendApp...657
PM_enableWriteCombine ...658
PM_enumWriteCombine ..659
PM_fatalError...660
PM_findBPD ..661
PM_findClose..662
PM_findFirstFile...663
PM_findNextFile...664
PM_flushTLB..665
PM_free ...666
PM_freeLibrary ...667
PM_freeLockedMem..668
PM_freePage ...669
PM_freePhysicalAddr ...670
PM_freeRealSeg ..671
PM_freeShared ..672
PM_getA0000Pointer ...673
PM_getBIOSPointer ...674
PM_getBootDrive ...675
PM_getCOMPort ...676
PM_getConsoleStateSize...677
PM_getCurrentPath ...678
PM_getDirectDrawWindow...679
PM_getFileAttr ...680
PM_getFileTime..681

SciTech SNAP, Graphics Architecture xii

Contents

PM_getIOPL...682
PM_getLPTPort..683
PM_getMachineName ..684
PM_getOSName ...685
PM_getOSType...686
PM_getPhysicalAddr ..687
PM_getPhysicalAddrRange..688
PM_getProcAddress..689
PM_getSNAPConfigPath ...690
PM_getSNAPPath..691
PM_getUniqueID..692
PM_getVESABuf..693
PM_getVGAStateSize...694
PM_getch ..695
PM_getdcwd ...696
PM_haveBIOSAccess..697
PM_init ...698
PM_inpb..699
PM_inpd..700
PM_inpw...701
PM_installService ...702
PM_installServiceExt ...703
PM_int86 ..704
PM_int86x ..705
PM_isSDDActive ...706
PM_kbhit...707
PM_loadDirectDraw...708
PM_loadLibrary ..709
PM_lockCodePages ...710
PM_lockDataPages ...711
PM_makepath..712
PM_malloc ..713
PM_mallocShared ...714
PM_mapPhysicalAddr ..715
PM_mapRealPointer ...716
PM_mkdir ...717
PM_openConsole...718
PM_outpb..719
PM_outpd..720
PM_outpw...721
PM_realloc ..722
PM_removeService..723
PM_restartRealTimeClock ..724
PM_restoreConsoleState ...725
PM_restoreRealTimeClockHandler...726
PM_restoreThreadPriority ..727
PM_restoreVGAState ...728
PM_rmdir..729
PM_runningInAWindow ...730
PM_saveConsoleState ...731
PM_saveVGAState ...732
PM_setDebugLog..733
PM_setFatalErrorCleanup..734

SciTech SNAP, Graphics Architecture xiii

Contents

PM_setFileAttr ...735
PM_setFileTime ..736
PM_setIOPL ...737
PM_setLocalBPDPath...738
PM_setMaxThreadPriority...739
PM_setOSCursorLocation ..740
PM_setOSScreenWidth ..741
PM_setRealTimeClockFrequency..742
PM_setRealTimeClockHandler ...743
PM_setSuspendAppCallback ..744
PM_sleep ...745
PM_splitpath...746
PM_startService..747
PM_stopRealTimeClock ..748
PM_stopService...749
PM_unloadDirectDraw ..750
PM_unlockCodePages ...751
PM_unlockDataPages ...752
PM_useLocalMalloc ..753
ULZElapsedTime...754
ULZReadTime...755
ULZTimerCount ...756
ULZTimerLap ...757
ULZTimerOff ..758
ULZTimerOn..759
ULZTimerResolution ..760
ZTimerInit...761
ZTimerInitExt...762

Type Definitions .. 763
CPU_largeInteger ...764
CPU_processorType ..765
EVT_asciiCodesType...767
EVT_eventJoyAxisType ..770
EVT_eventJoyMaskType...771
EVT_eventMaskType..772
EVT_eventModMaskType ..773
EVT_eventMouseMaskType ...774
EVT_eventType...775
EVT_masksType..776
EVT_scanCodesType...777
LZTimerObject..780
PCIAGPCapability..781
PCIAGPCommand..782
PCIAGPStatus ..783
PCIAccessRegFlags ...784
PCICapsHeader ...785
PCICapsType...786
PCIClassTypes ..787
PCICommandFlags ...788
PCIDeviceInfo ...789
PCIHeaderTypeFlags...791
PCIStatusFlags..792
PCIType0Info ..793

SciTech SNAP, Graphics Architecture xiv

Contents

PCIType1Info ..795
PCIType2Info ..797
PCIslot...798
PE_errorCodes...799
PMBYTEREGS...800
PMDWORDREGS...801
PMEnableWriteCombineErrors ..802
PMEnableWriteCombineFlags..803
PMFileFlagsType ..804
PMREGS...805
PMSREGS ..806
PMSplitPathFlags ...807
PMWORDREGS ..808
PM_HWND..809
PM_IRQHandle ..810
PM_MODULE ...811
PM_agpMemoryType ...812
PM_enumWriteCombine_t ...813
PM_fatalCleanupHandler ...814
PM_findData ..815
PM_intHandler ...816
PM_irqHandler ...817
PM_lockHandle...818
PM_physAddr...819
PM_suspendAppCodesType..820
PM_suspendAppFlagsType ..821
PM_suspendApp_cb..822
PM_time..823
RMREGS ..824
RMSREGS ..825
__codePtr...826
codepage_entry_t...827
codepage_t ...828
event_t ...829

Index ... 831

SciTech SNAP, Graphics Architecture xv

SciTech SNAP, Graphics Architecture 1

Introduction

Introduction

This document contains the SciTech SNAP Graphics Architecture Hardware Abstraction
Layer reference.

What is SciTech SNAP?

The SciTech System Neutral Access Protocol, or SNAP, is an operating system portable,
dynamically loadable, native-size 32-bit/64-bit device driver architecture. SciTech SNAP
defines the architecture for loading an operating system neutral binary device driver for
any type of hardware device, be it a graphics controller, audio controller, SCSI controller
or network controller. SciTech SNAP drivers are source code portable between different
microprocessor platforms, and the binary drivers are operating system portable within a
particular microprocessor family. Hence the Intel x86 drivers can work on any 386+ CPU
with any 32-bit operating system or environment supported on that CPU. With the
introduction of SNAP 3.0, native binary SNAP drivers are now available for 32-bit
PowerPC CPUs and 64-bit x86-64 CPUs.

The main SciTech SNAP library for a particular device type is always contained in a
single file that we call a ‘Binary Portable DLL’, or .bpd file. In the case of the Graphics
Architecture, the driver file is named ‘graphics.bpd’ and always lives in the operating
system specific SciTech SNAP driver directory, or in the drivers directory of the
application using it. Internally the complete set of device support files may be spread
across multiple files inside subdirectories, or all files may be optionally bound into a
single, large binary file. The internal architecture of SNAP is such that only the necessary
code to communicate with a specific device is actually loaded into memory at runtime,
regardless of whether everything is bound into a single large binary file or maintained
separately on disk. Loading only the necessary portions at runtime keeps the runtime
memory footprint for the drivers exceptionally low. For instance even though the
complete, statically bound graphics driver file may be well in excess of 8Mb, only a
small portion of that (say around 250Kb) is actually loaded in memory at runtime to
support a particular graphics device.

Due to the dynamic nature of the SciTech SNAP architecture, it is possible to bind
together support for only a few specific hardware devices in a single binary library. For
instance an industrial developer may only require support for the three graphics
chipsets they install in their machines on a production line, so the total static size of the
SNAP binaries can be significantly smaller. This can help save on disk and flash ROM
space in highly embedded and industrial applications. SciTech SNAP also allows certain
features to be ‘bound out’ of the resulting binary, further reducing disk space if those
features are not required for a particular environment.

SciTech SNAP, Graphics Architecture 2

Introduction

What is SciTech SNAP Graphics Architecture?

This particular specification deals with graphics controllers and is called the SciTech
SNAP Graphics Architecture. This document defines a complete Hardware Abstraction
Layer (HAL) for modern graphics controllers, including support for features such as 2D
and 3D rendering, video acceleration, power management and Plug and Play operation.
The following is a brief list of some of the features provided by this specification:

• Standard application interface to graphical user interface accelerator devices.
• Operating system neutral high performance 32-bit loadable device driver.
• Support for Plug and Play and multiple independent controllers in a single

system.
• Support for bus mastering (i.e.: PCI and AGP bus interfaces)
• Support for hardware video acceleration.
• Support for 2D hardware acceleration.
• Support for 3D hardware acceleration.
• Support for standard and extended text modes.
• Support for pixel depths from 4 bit to 32-bits per pixel.
• Support for all 16 ROP2 mixes.
• Support for all 256 ROP3 mixes.
• Support for off screen memory management for bitmap storage.
• Support for multi buffering for flicker free animation.
• Support for virtual scrolling for large desktops and arcade style games.
• Support for refresh rate control.
• Support for stereo liquid crystal shutter glasses.
• Support for DPMS Power Management
• Support for I2C Serial Control Interface

SciTech SNAP, Graphics Architecture 3

Installing SciTech SNAP Graphics

Installing SciTech SNAP Graphics

This chapter is intended to provide the necessary information to help developers get up
and running with the SciTech SNAP Graphics SDK, and to show the steps necessary to
compile and link the libraries and sample programs from for your OS and compiler
configuration.

Downloading and Installing SciTech SNAP Graphics

Before you install any SciTech Software developer products, you should decide upon a
standard root directory for installing all of the products into. By default the many of the
configuration files assume c:\scitech as the installation location (~/scitech for
Unix). You might like to install the files onto a different drive or directory, but should
install all the files for all the different SciTech Software products that you have under the
same directory tree. Many SciTech Software products use common libraries and
common header files, so when you install them into the same directory you will only
have one copy of each of these common files and won’t run into conflicts with multiple
copies of the same files on your system.

Once you have decided on a location to install to, at a minimum you will need a copy of
the source archive, the base utilities archive for your operating system and the SciTech
SNAP device driver binaries. Uncompress all files in the archive into the directory on
your system where you want the files to live (normally c:\scitech or ~/scitech for
Unix). You can optionally install the source code for the base archive utilities as well as
the SDK documentation in HTML format (for offline browsing). The names of the
archives included in release “rXX” are:

DOS, Windows and OS/2 hosted files
snap_sdk_3.0-rXX-src.zip Source archive in DOS/Win32 format
snap_sdk_3.0-rXX-dos.zip DOS hosted base utilities
snap_sdk_3.0-rXX-win32.zip Win32 hosted base utilities
snap_sdk_3.0-rXX-os2.zip OS/2 hosted base utilities
snap_sdk_3.0-rXX-drivers.zip SciTech SNAP device driver binaries
snap_sdk_3.0-rXX-util.zip Source code for base utilities
snap_sdk_3.0-rXX-docs.zip SDK documentation in HTML format
snap_sdk_3.0-rXX-pdf.zip SDK documentation in PDF format

SciTech SNAP, Graphics Architecture 4

Installing SciTech SNAP Graphics

Linux, QNX and Unix hosted files
snap_sdk_3.0-rXX-src.tar.gz Source archive in Unix format
snap_sdk_3.0-rXX-linux.tar.gz Linux hosted base utilities
snap_sdk_3.0-rXX-qnx.tar.gz QNX hosted base utilities
snap_sdk_3.0-rXX-drivers.tar.gz SciTech SNAP device driver binaries
snap_sdk_3.0-rXX-util.tar.gz Source code for base utilities
snap_sdk_3.0-rXX-docs.tar.gz SDK documentation in HTML format
snap_sdk_3.0-rXX-pdf.tar.gz SDK documentation in PDF format

Makefile Utilities Configuration

Once you have installed the files, you need to configure the makefile utilities and tools
to allow you to compile the libraries. If you are compiling under DOS or a Windows
DOS box, you will need to set the environment for your DOS box to at least 4096 bytes as
we use a lot of environment variables.

The first step to set up the compile environment is always to edit the set-vars script files
specific to your platform (copy it to a different named file if you are working with
source code checked out of Perforce as this file will be read only). This file contains two
very important variables that you need to ensure are set correctly. These are:

SCITECH Points to the location where you installed the files
SCITECH_LIB Should be the same as the above

The SCITECH_LIB variable is where files get copied to when you do a dmake
install, and is usually the same as the SCITECH variable. However it can be different
if you wish the libraries to be installed to a different path such as on a shared file server
for release builds.

To help you get started configuring your system we have created a number of startup
script files for each of the different operating systems. These files are called in the
%SCITECH%\start-sdk.* files with an extension specific to each OS. These files
contain the necessary sequence of steps to call the appropriate batch files to set up the
compile environment. To use this copy this file to a new filename and edit to call your
version of the set-vars script file as necessary.

DOS/Windows hosted tools (start-sdk.bat)
The first thing you need to do is edit the bin-win32\set-vars.bat batch file to
reference the location where you have installed the files, and the locations where all
your compilers are installed. See the comments in set-vars.bat for more information.

Once you have the startup file configured, you then need to run the following each time
you start a command shell to enable the SciTech makefile utilities (a good idea to put
into your startup batch files):

SciTech SNAP, Graphics Architecture 5

Installing SciTech SNAP Graphics

call c:\scitech\bin-win32\set-vars.bat
call c:\scitech\bin-win32\wc11-w32.bat

The second batch file sets up the compiler configuration for your default compiler. The
line above sets up for Watcom C++ 11.0 32-bit Windows compilation. Substitute this for
any of the batch files in the bin directory for the compiler you are using. You can choose
from the following batch files to configure the build environment for different
supported compilers:

32-bit DOS protected mode support:
bc45-d32.bat Borland C++ 4.52 (DPMI32)
bc50-d32.bat Borland C++ 5.0 (DPMI32)
bcb50-d32.bat Borland C++ Builder 5.0 (DPMI32)
gcc2-dos.bat GNU C++ 2.9.5 (DJGPP 2.02)
w10ad32.bat Watcom C++ 10.0a (DOS4GW)
wc10-d32.bat Watcom C++ 10.6 (DOS4GW)
wc11-d32.bat Watcom C++ 11.0 (DOS4GW)
ow10-d32.bat Open Watcom C++ 1.x (DOS4GW)

32-bit Windows GUI support:
bc45-w32.bat Borland C++ 4.52 GUI programs
bc50-w32.bat Borland C++ 5.0 GUI programs
bcb50-w32.bat Borland C++ Builder 5.0 GUI programs
gcc2-w32.bat GNU C++ 2.9.x Win32 (Cygwin) GUI programs
gcc3-w32.bat GNU C++ 3.x Win32 (Cygwin) GUI programs
vc40-w32.bat Microsoft Visual C++ 4.2 GUI programs
vc50-w32.bat Microsoft Visual C++ 5.0 GUI programs
vc60-w32.bat Microsoft Visual C++ 6.0 GUI programs
vc70-w32.bat Microsoft Visual C++ 7.0 .NET GUI programs
wc10aw32.bat Watcom C++ 10.0a GUI programs
wc10-w32.bat Watcom C++ 10.6 GUI programs
wc11-w32.bat Watcom C++ 11.0 GUI programs
ow10-w32.bat Open Watcom C++ 1.x GUI programs

SciTech SNAP, Graphics Architecture 6

Installing SciTech SNAP Graphics

32-bit Windows console support:
bc45-c32.bat Borland C++ 4.52 console programs
bc50-c32.bat Borland C++ 5.0 console programs
bcb50-c32.bat Borland C++ Builder 5.0 console programs
gcc2-c32.bat GNU C++ 2.9.x for Win32 (Cygwin) console programs
gcc3-c32.bat GNU C++ 3.x for Win32 (Cygwin) console programs
vc40-c32.bat Microsoft Visual C++ 4.2 console programs
vc50-c32.bat Microsoft Visual C++ 5.0 console programs
vc60-c32.bat Microsoft Visual C++ 6.0 console programs
vc70-c32.bat Microsoft Visual C++ 7.0 .NET console programs
wc10aw32.bat Watcom C++ 10.0a console programs
wc10-c32.bat Watcom C++ 10.6 console programs
wc11-c32.bat Watcom C++ 11.0 console programs
ow10-c32.bat Open Watcom C++ 1.x console programs

Note also that once you have properly set up the makefile utilities, you can switch
between different compilers from the command line simply by calling one of the above
batch files. This makes it easy to test and compile your own code with multiple
compilers on a single machine.

For Windows development, you may also wish to note that the difference between
console and GUI compilation is controlled by the WIN32_GUI environment variable. If
you find that compiling SDK examples cannot be completed due to missing references to
WinMain or DEF definition file, it is probably because that example is simply a console-
only application. So try re-compiling with the “c32” version batch file instead of “w32”.

Win32 hosted tools (start-sdk.bat)
The Win32 hosted tools are identical to the 32-bit DOS hosted tools, however they are
native Win32 tools and hence can support long filenames properly under Windows 9x
and Windows NT/2000/XP. The Win32 tools usually runs slower than the DOS hosted
tools on Windows 9x, but significantly faster on Windows NT/2000/XP. Unless you
need long filenames, you may want to stick with the DOS hosted tools for Windows 9x
environments. By default the startup scripts will automatically detect the host platform
and use the Win32 tools for Windows NT/2000/XP and the DOS tools for Windows 9x.

Windows hosted tools for RTTarget-32 (start-sdk.bat)
In order to use the Windows hosted environment for On Time RTTarget-32
development, you need to additionally modify the bin-win32\set-vars.bat batch
file to reference the location where you have installed the RTTarget-32 SDK headers and
libraries.

Once you have the startup file configured, you then need to run the following each time
you start a command shell to enable the SciTech makefile utilities (a good idea to put
into your startup batch files):

SciTech SNAP, Graphics Architecture 7

Installing SciTech SNAP Graphics

call c:\scitech\bin-win32\set-vars.bat
call c:\scitech\bin-win32\vc60-rtt.bat

The second batch file sets up the compiler configuration for your default compiler. The
line above sets up for Microsoft Visual C++ 6.0 32-bit RTTarget-32 compilation. You can
choose from the following batch files to configure the build environment for different
supported compilers:

32-bit RTTarget-32 support:
bc50-rtt.bat Borland C++ 5.0 RTTarget-32 programs
bcb5-rtt.bat Borland C++ Builder 5.0 RTTarget-32 programs
vc50-rtt.bat Microsoft Visual C++ 5.0 RTTarget-32 programs
vc60-rtt.bat Microsoft Visual C++ 6.0 RTTarget-32 programs
ow10-rtt.bat Open Watcom C++ 1.x RTTarget-32 programs

Note that invoking these RTTarget-32 batch files may set or clear options for linking
with additional On Time libraries like RTFiles-32 and RTKernel-32, or the DLL version
of RTTarget-32. You can change the environment variable options from the command
line, though may wish to change them by modifying the respective batch files.

Also note that while On Time RTTarget-32 version 4.x release does not officially support
Watcom C, it is still possible to compile and link with the DLL version of RTTarget-32
using OpenWatcom C 1.x and the DLL import libraries provided in the On Time SDK
for Microsoft Visual C.

Note: If you wish to use RTFiles-32 filesystem support (controlled by the USE_RTFILES32
environment variable), you will need to copy the RTFiles-32 SDK example Init.c module
or similar version into the PM library compilation path. This will insure that the RTFiles-
32 filesystem declarations are included in your SNAP application and initialized at
startup by RTTarget-32. If your own custom modified version renamed the initialization
function, you should refer to the PM library source to make any changes.

OS/2 hosted tools (start-sdk.cmd)
The first thing you need to do is edit the bin-os2\set-vars.cmd script file to
reference the location where you have installed the files, and the locations where all
your compilers are installed. See the comments in set-vars.cmd for more information.

Once you have the startup file configured, you then need to run the following each time
you start a command shell to enable the SciTech makefile utilities (a good idea to put
into your startup batch files):

call c:\scitech\bin-os2\set-vars.cmd
call c:\scitech\bin-os2\wc11-o32.cmd

The second batch file sets up the compiler configuration for your default compiler. The
line above sets up for Watcom C++ 11.0 32-bit OS/2 compilation. Substitute this for any
of the batch files in the bin directory for the compiler you are using. You can choose

SciTech SNAP, Graphics Architecture 8

Installing SciTech SNAP Graphics

from the following batch files to configure the build environment for different
supported compilers:

32-bit OS/2 GUI support:
emx-p32.cmd GNU C++ (emx) Presentation Manager programs
va30-p32.cmd IBM VisualAge for C++ 3.0 Presentation Manager programs
va36-p32.cmd IBM VisualAge for C++ 3.65 Presentation Manager programs
wc10-w32.cmd Watcom C++ 10.6 GUI Presentation Manager programs
wc11-w32.cmd Watcom C++ 11.0 GUI Presentation Manager programs
ow10-w32.cmd Open Watcom C++ 1.x GUI Presentation Manager programs

32-bit OS/2 console support:
emx-o32.cmd GNU C++ (emx) console programs
va30-o32.cmd IBM VisualAge for C++ 3.0 console programs
va36-o32.cmd IBM VisualAge for C++ 3.65 console programs
wc10-w32.cmd Watcom C++ 10.6 GUI console programs
wc11-w32.cmd Watcom C++ 11.0 GUI console programs
ow10-w32.cmd Open Watcom C++ 1.x GUI console programs

Note also that once you have properly set up the makefile utilities, you can switch
between different compilers from the command line simply by calling one of the above
batch files. This makes it easy to test and compile your own code with multiple
compilers on a single machine.

Note: In order for any of the OS/2 sample programs to run, you must have the SDDHELP.SYS
device driver loaded. Hence ensure you add this device driver to your CONFIG.SYS file
and then reboot in order to start using the SNAP SDK programs. This file is also
distributed along with the old SciTech Display Doctor for OS/2 as well as the more recent
SciTech SNAP Graphics for OS/2 products.

Linux hosted tools (start-sdk.linux)
The first thing you need to do is edit the bin-linux/set-vars-linux.sh script file
to reference the location where you have installed the files, and the locations where all
your compilers are installed. See the comments in set-vars-linux.sh for more
information.

Once you have the startup file configured, you then need to run the following each time
you start a command shell to enable the SciTech makefile utilities (a good idea to put
into your startup scripts such as .bash_profile):

. ~/scitech/bin-linux/set-vars-linux.sh

. ~/scitech/bin-linux/gcc-linux.sh

SciTech SNAP, Graphics Architecture 9

Installing SciTech SNAP Graphics

The second script file sets up the compiler configuration for your default compiler. The
line above sets up for GNU C/C++ for Linux (eventually other compilers will be
supported such as Borland Kylix).

Note that in the above script code, you need to source the script files to ensure the
environment variables are exported to your regular shell. Hence make sure the leading
'.' is included!

If you are developing on an older libc5 based system (as opposed to the newer glibc as
used by Red Hat 5.x and later), you will also need to set the LIBC=1 environment
variable. This will tell our script files that you running on an older system and need to
use the libc5 compiled binaries, and to put your compiled libraries into the libc5
directories.

Also in order to build the SNAP libraries, you should have the latest Linux 2.x kernel
sources installed. The PM library depends upon a number of header files from the 2.x
kernels (joystick.h and mtrr.h) in order to build. You can build for older kernels if
you wish, but you will need to modify the PM library makefile to do this.

QNX hosted tools (start-sdk.qnx)
The first thing you need to do is edit the bin-qnx/set-vars-qnx.sh script file to
reference the location where you have installed the files, and the locations where all
your compilers are installed. See the comments in set-vars-qnx.sh for more
information.

Once you have the startup file configured, you then need to run the following each time
you start a command shell to enable the SciTech makefile utilities (a good idea to put
into your startup scripts such as .bash_profile):

. ~/scitech/bin-qnx/set-vars-qnx.sh

. ~/scitech/bin-qnx/qnx4.sh

The second script file sets up the compiler configuration for your default compiler. The
line above sets up for Watcom C++ 10.6 for QNX.

Note that in the above script code, you need the source the script files to ensure the
environment variables are exported to your regular shell. Hence make sure the leading
'.' is included!

Note also that for QNX development you will need to set the USE_BIOS=1 environment
variable to enable support for calling the BIOS. You will also need to copy the
vbios.lib files from the drivers/qnx directory into your runtime library
directories. The final release will allow you to build SNAP programs without requiring
the BIOS support, but for the moment the BIOS support is required to run under QNX,
even though it is not used if you are running on SciTech SNAP drivers.

SciTech SNAP, Graphics Architecture 10

Installing SciTech SNAP Graphics

Compiling SciTech SNAP Graphics

Once you have all the startup scripts configured and executed, you are ready to begin
compiling. Building all the SNAP libraries in one fell swoop is very easy. Simply change
into the src directory below where you have installed all the files and issue a dmake
build. Ie:

cd scitech/src
dmake build

Using dmake build will force build all the libraries, and will build all the libraries with
your selected compiler and using the currently configured options. If any errors are
encountered during the build, it will stop and you can fix the errors and then restart the
build from the offending library with a simple dmake command (ie: the default target
builds for the selected compiler). You can also build each library from each directory if
you wish as well.

By default the makefile utilities hide the actual command lines used to call the compiler
on Unix systems to clean up the compile process output. This makes it much easier to
see errors and warnings in the code as it compilers. If you need to see the actual
command lines passed to the compiler, you can build using the SHOW_ARGS=1 variable
(ie: dmake build SHOW_ARGS=1).

Compiling release and debug builds
We have also created script files to build all libraries for your selected compiler in both
'debug' and 'release' modes. To build the debug libraries, go into the src directory and
issue run the mkdebug script files. Ie:

cd scitech/src
mkdebug

To build the release libraries, go into the src directory and issue run the mkrelease
script files. Ie:

cd scitech/src
mkrelease

All debug libraries end up under the lib/debug directory tree, and all release libraries
end up under the lib/release directory tree. To link your own programs with the
debug libraries, you set the environment variable CHECKED=1 (or set it on the dmake
command line). This will tell the dmake makefile scripts to build in CHECKED debug
mode (add extra runtime checks) as to get the libraries from the lib/debug directories.
Otherwise the libraries are pulled from the lib/release directory.

Compiling the sample programs
Once you have all the libraries built, you can try to compile some of the sample
programs using dmake. Building a sample program is as simple as changing to the
directory where the sample program exists, and issuing a dmake command. To build the
GATest example program for instance, you would do the following:

SciTech SNAP, Graphics Architecture 11

Installing SciTech SNAP Graphics

cd %SCITECH%\examples\snap\graphics\gatest
dmake

Setting up Your Compiler Configuration
Once you have installed the source code and compiled the libraries from the command
line, you will need inform your compiler where the include files and library files are
located for your own projects. The following steps provide a guide to setting things up
correctly for your compiler.

After the files are installed, all include files into the %SCITECH%\include directory
under the installation directory where you chose to install the product. So if you
installed the product in c:\scitech, the include file directory would be
c:\scitech\include). If you are compiling your applications from the Integrated
Development Environment (IDE) for your compiler, you will need to set the include
directories for your project file’s to include the %SCITECH%\include directory.

If you are compiling from the command line, you simply need to add the
%SCITECH%\include directory to your INCLUDE path environment variable (or the
command line configuration file for your compiler if it doesn’t use environment
variables).

When the libraries are built, the library files end up under the %SCITECH%\lib
directory under the installation directory where you chose to install the product. So if
you installed the product in c:\scitech, the library directory is c:\scitech\lib).
Beneath this directory is are debug and release directories, containing debug and
release versions of the libraries (depending on what you compiled or installed). Beneath
those two directories is a hierarchy of directories containing library files for different
operating systems and different compilers as shown in the tables below (there may be
more if there are more compilers supported in a particular release):

32-bit DOS protected mode support:
dos32\bc4 Borland C++ 4.52 32-bit DOS libraries
dos32\bc5 Borland C++ 5.0 32-bit DOS libraries
dos32\wc10 Watcom C++ 10.6 32-bit DOS libraries
dos32\wc11 Watcom C++ 11.0 32-bit DOS libraries
dos32\ow10 Open Watcom C++ 1.x 32-bit DOS libraries
dos32\dj2 DJGPP 2.01 32-bit DOS libraries

SciTech SNAP, Graphics Architecture 12

Installing SciTech SNAP Graphics

32-bit Windows:
win32\bc4 Borland C++ 4.52 32-bit Windows libraries
win32\bc5 Borland C++ 5.0 32-bit Windows libraries
win32\bcb5 Borland C++ Builder 5.0 32-bit Windows libraries
win32\vc40 Microsoft Visual C++ 4.0 32-bit Windows libraries
win32\vc50 Microsoft Visual C++ 5.0 32-bit Windows libraries
win32\vc60 Microsoft Visual C++ 6.0 32-bit Windows libraries
win32\vc70 Microsoft Visual C++ 7.0 .NET 32-bit Windows libraries
win32\wc10 Watcom C++ 10.6 32-bit Windows libraries
win32\wc11 Watcom C++ 11.0 32-bit Windows libraries
win32\ow10 Open Watcom C++ 1.x 32-bit Windows libraries

32-bit RTTarget-32:
rtt32\bc50 Borland C++ 5.0 32-bit RTTarget-32 libraries
rtt32\bcb5 Borland C++ Builder 5.0 32-bit RTTarget-32 libraries
rtt32\vc50 Microsoft Visual C++ 5.0 32-bit RTTarget-32 libraries
rtt32\vc60 Microsoft Visual C++ 6.0 32-bit RTTarget-32 libraries
rtt32\ow10 Open Watcom C++ 1.x 32-bit RTTarget-32 libraries

32-bit OS/2:
os232\emx GNU C++ for OS/2 libraries (emx)
os232\va3 IBM VisualAge for C++ 3.0 OS/2 libraries
os232\va36 IBM VisualAge for C++ 3.65 OS/2 libraries
os232\wc11 Watcom C++ 11.0 32-bit OS/2 libraries
os232\ow10 Open Watcom C++ 1.x 32-bit OS/2 libraries

Linux:
linux/gcc/x86/a GNU C++ for Linux 32-bit static libraries (x86)
linux/gcc/x86/so GNU C++ for Linux 32-bit shared libraries (x86)
linux/gcc/x86-64/a GNU C++ for Linux 64-bit static libraries (x86-64)
linux/gcc/x86-64/so GNU C++ for Linux 64-bit shared libraries (x86-64)
linux/gcc/ppc-be/a GNU C++ for Linux static libraries (PowerPC Big Endian)
linux/gcc/ppc-be/so GNU C++ for Linux shared libraries (PowerPC Big

Endian)
linux/gcc/alpha/a GNU C++ for Linux static libraries (Alpha Big Endian)
linux/gcc/alpha/so GNU C++ for Linux shared libraries (Alpha Big Endian)

SciTech SNAP, Graphics Architecture 13

Installing SciTech SNAP Graphics

QNX:
qnx4/wc10 Watcom C++ 10.6 for QNX 4
qnx4/wc11 Watcom C++ 11.0 for QNX 4
Qnxnto GNU C++ for QNX Neutrino

If you are compiling your applications from the IDE for your compiler, you will need to
set the library directories for your project file to include the %SCITECH%\lib\…
directory (select the appropriate directory from Tables above). If you are compiling from
the command line, you simply need to add the %SCITECH%\lib\… path to your LIB
path environment variable (or the command line configuration file for your compiler if it
doesn’t use environment variables).

Once you have done the above steps, you should then be able to compile and link your
own programs using the SDK.

Note: For Watcom C++ users, by default Watcom C++ compiles all source code using register
based parameter passing. Hence by default all SciTech Software libraries are compiled
with register based parameter passing. If you are compiling and linking you code for stack
based parameter passing, you will need to link with a different set of libraries. All libraries
can be compiled with either stack and register based calling. The stack based libraries will
have the same name as the register based versions of the libraries, but will have an extra ‘s’
added to the front of the library name. To build or link to the stack call libraries, use the
STKCALL=1 option to dmake.

Using the Makefile Utilities

Once you are up and running with your default compiler configuration, you should be
able to run dmake from the directory containing the sample programs or libraries that
you wish to compile. If things run smoothly you should get a resulting executable file or
library. The section describes some of the more common options you can use to control
the compile environment using dmake.

Standard Makefile Targets
All of the makefile utilities startup scripts support a standard set of targets for
controlling the compilation for the current compiler. The most common commands and
useful targets that you may want to use when building examples and re-compiling any
libraries are listed in the table below:

Dmake Running dmake by itself in a directory will select the default
target for the makefile, which is usually to compile and link
all sample programs in that directory. Some makefiles only
support building libraries so the default target may produce a
library rather than an executable file.

dmake –u The -u command line option forces a complete re-build of all
files, so it is useful to re-build an entire directory from scratch.

SciTech SNAP, Graphics Architecture 14

Installing SciTech SNAP Graphics

dmake lib This builds just the library for the directory.

dmake install This builds just the library for the directory and then installs
the library into the appropriate c:\scitech\LIB\xxx\xx
directory. You should only do this once you are sure that
everything is working correctly! The new library will
overwrite the old library.

dmake clean This cleans out all object files, libraries and pre-compiled
header files etc from the directory, but leaves all executable
files and shared libraries.

dmake cleanexe This cleans out all non-source files including all executeable
files and shared libraries.

Standard Makefile Options

All of the makefile utilities startup scripts support a standard set of options for
controlling the way that the compilation is performed. Makefile options are provided for
turning on debug information, speed or size optimizations and inline floating point
instructions. By default when you build files, no optimizations and no debugging
information is generated. The following table lists the most common and useful of these
options for building examples and re-compiling any libraries.

DBG Turns on debug information
OPT Turns on speed optimizations
OPT_SIZE Turns on size optimizations
FPU Turns on inline floating point arithmetic
BUILD_DLL Build a dynamic link library of Unix shared library
STKCALL Turns on stack calling conventions for Watcom C++
SHOW_ARGS Show full arguments passed to compiler under Unix
CHECKED Compile and link against checked debug libraries
MAX_WARN Turn on maximum compiler warning setting
USE_PMODEW Use PMODE/W DOS extender for 32-bit DOS
USE_CAUSEWAY Use CauseWay DOS extender for 32-bit DOS

All of the above options can be passed to dmake in one of two ways: on the command
line or as global environment variables. For instance the following are equivalent:

dmake DBG=1 OPT=1 install

or

set DBG=1
set OPT=1
dmake install

The primary difference between the two is that by setting the environment variables,
you change the default behavior for dmake, so that every time you build something

SciTech SNAP, Graphics Architecture 15

Installing SciTech SNAP Graphics

those options will be in effect. The environment variable mechanism is useful to set the
most common options that you will use so you don’t have to constantly pass them on
the command line.

CauseWay DOS Extender Support

The SciTech SNAP Graphics SDK is designed to work with Open Watcom C++ and both
the DOS4G/W and CauseWay DOS extenders. It is recommended that you use the latest
versions, as included with Open Watcom 1.2 or later. Earlier versions may not support
required features, such as Intel MTRR programming.

In order to compile and link your programs to use CauseWay, either set the
USE_CAUSEWAY=1 environment variable, or pass this variable on the command line to
the dmake program.

Connecting with Perforce

SciTech Software uses the commercial Perforce version management software to
maintain it's public Open Source software repository. Perforce Software has graciously
allowed Open Source software projects to be able to use a free server license for that
source code. This section details how you can use Perforce to keep up to date with the
absolute latest versions of the SciTech SNAP SDK.

Download a Perforce Client
In order to get Perforce up and running on your system, you first need to download the
Perforce client program for your Operating System. Perforce Software provides clients
for just about every OS freely on their web site at:

http://www.perforce.com/perforce/loadprog.html

All you need to do is download the appropriate p4 binary for your Operating System
from their web site. You may also want to download or browse the documentation for
p4, although it is quite simple to use from the command line and has extensive
command line help.

Note: If you have not upgraded recently you should upgrade your copy of Perforce to 2002.1 or
later, which has some new features that our Perforce server supports. However our depot
should work with most Perforce clients right back to the 97.x series.

In order to use Perforce you will need a TCP/IP connection to the internet, either via
modem or direct connection. Accessing Perforce via modem is actually quite fast, and
we regularly have developers doing remote development over slow modem links from
around the world.

Setting up your environment for anonymous access
Once you have downloaded the p4 binary and put it on your path, you want to set the
following environment variables:

SciTech SNAP, Graphics Architecture 16

http://www.perforce.com/perforce/loadprog.html

Installing SciTech SNAP Graphics

P4PORT = perforce.scitechsoft.com:3488
P4USER = anonymous
P4PASSWD = anonymous
P4CLIENT = YOURNAME_YOURMACHINE_YOUROS
P4EDITOR = (path to your favorite console editor, such as vi)

where you would replace YOURNAME_YOURMACHINE_YOUROS with a unique name (you
can't use a client that someone else is already using anonymously!). For instance a valid
client name might be: JOEBLOGGS_DEVEL_LINUX.

The client names the view that maintains the information about what files you have
checked out on that system, and it must be unique for each user, and each machine. If
you are doing development under multiple Operating Systems or multiple machines,
you need a separate client view for each machine and each Operating System that will
contain a copy of the source code from Perforce (hence the above naming convention for
clients).

Once you have the above variables set up, you can see if Perforce can access our server
by typing the following:

p4 info

You should see something similar to the following if it can connect successfully:

User name: anonymous
Client name: JOEBLOGGS_DEVEL_LINUX
Client host: MYMACHINE
Client root: c:\
Current directory: c:\scitech\src
Client address: 65.209.3.29:3643
Server address: perforce.scitechsoft.com:3488
Server root: /home/perforce
Server date: 2000/12/17 16:21:08 PST
Server version: P4D/LINUX52X86/2000.1/17250 (2000/09/11)
Server license: Scitech Software 58 users (support ends 2001/06/21)

Setting up your client mapping
Once you are able to connect, you need to set up your client mapping since by default it
will be empty. The client space is what allows you to map in only the portions of the
software repository that you care about, and where to put them on your local system.
The client information is then stored remotely on our server so it knows what files you
have on your system and where they live (so if you delete stuff manually you will need
to do a forced sync!).

To set up your client mapping, type:

p4 client

which will bring you into your editor of choice. It will include comments at the top
about what parts of the file are used for what. There are two parts that you need to
modify; the 'root' definition and the 'view' definition. The 'root' field is the root directory
where all files get checked out onto your system, and this should be the root of the

SciTech SNAP, Graphics Architecture 17

Installing SciTech SNAP Graphics

scitech directory (ie: /home/KendallB/scitech is where I put the sources on Unix
systems, or c:\scitech for DOS, Windows and OS/2 systems). For example:

Root: /home/KendallB/scitech

The 'options' field defines what options are in effect for that client. The most important
one you will want to change is the 'nocompress' option to 'compress'. By enabling
compression, you will drastically reduce the time required for syncs over an internet
connection! The second most useful option is to change the ‘normdir’ option to ‘rmdir’.
This will have Perforce remove empty directories from the file system when all the files
managed by Perforce are deleted and the directory is empty.

The 'view' field defines what parts of the perforce repository you want mapped to your
local drive. The simplest mapping will pull down all the source files you would need
(and the one you should probably use) would be:

View:
 //depot/gpl/... //YOURNAME_YOURMACHINE_YOUROS/...

where you would replace the YOURNAME_YOURMACHINE_YOUROS above with the name
of your client. This line indicates that all files and directories get mapped to the root of
the client (or /home/KendallB/scitech if you uses the above root field). Now once
you have the client view defined, exit your editor and it will send the changes to the
perforce server.

Syncing up for the first time
The SciTech Perforce software repository contains a lot of code, and doing a full sync
will pull down well in excess of 60Mb of files! Hence in order to save time for the initial
sync, you can download and the latest ‘full depot’ archive to your system, and then tell
Perforce that you have all files at the time that release was made. Then when you sync
up you will only pull down all the files that have changed since the version of the full
depot files you downloaded. You will need to first download one of the following files
(where ‘rXX’ is the release number) depending on the platform you are using:

full_depot_rXX.zip Complete copy of GPL depot in DOS/Win format
full_depot_rXX.tar.gz Complete copy of GPL depot in Unix format

Once you have the full depot files downloaded and installed, you can do the initial sync
for using the following commands:

p4 flush -f @public_release_XX
p4 sync

This will tell Perforce that you have all the files at the label ‘public_release_XX’ where
‘XX’ is release number, such as ‘17’. You can change this label to the appropriate label
for the for the public release that you have downloaded. Then the 'p4 sync' command
grabs any changes that have occurred since the ‘public_release_XX’ label. Once you have

SciTech SNAP, Graphics Architecture 18

Installing SciTech SNAP Graphics

synced up the first time, you should only need to use 'p4 sync' to get the latest updates
to all the files from that point forward.

Using Perforce from the command line
Using Perforce is very easy, and you can get help from the command line with:

p4 help

The most common commands you might need to use are as follows.

p4 sync - Sync up with the latest sources
p4 edit - Open a file for editing
p4 add - Add a new file to the repository
p4 delete - Delete a file from the repository
p4 resolve - Resolve conflicts if two people edit the same file
p4 revert - Revert changes for a currently opened file
p4 submit - Submit all changes to the repository
p4 opened - List call files you currently have opened

The big difference between Perforce and other SCM systems like RCS is that Perforce is
'change' oriented. When you submit a change list, included in the change list will be all
of the files that you currently have opened. If you don't want a file in that change list,
simply delete it from the change list in the editor and it won't be submitted but will
remain in your list of open files after the submit. You must provide a description for the
change, and then the entire set of files associated with the change is submitted as a
single atomic change to the server, including file additions and deletions! Hence when
you need to revert back to older versions of the code, you can do it via the revision
number for a specific file, a change list number to go back to the state when a particular
change was submitted, or a label defined earlier.

Note that anonymous users only have read access to the software repository, and will
not be able to open any files or submit changes. If you wish to be able to contribute
changes to the SciTech Perforce repository, please contact perforce@scitechsoft.com
directly to find out how you can get a developer account with read/write access.

SciTech SNAP, Graphics Architecture 19

mailto:perforce@scitechsoft.com

Programming with SNAP Graphics

Programming with SNAP Graphics

This chapter describes in detail the issues application and system software developers
will face when developing code to use the SciTech SNAP, Graphics Architecture.

Loading and Initializing SciTech SNAP Graphics

This section contains an overview of the procedures required to load and initialize the
SciTech SNAP Graphics Architecture drivers.

Runtime Library Standard Locations
In order to be able to use the SciTech SNAP Graphics Architecture, the library must be
dynamically loaded and initialized with a driver specific to the installed hardware
loaded into memory. The SciTech SNAP Graphics Architecture interface library
(n_ga.lib) contains the code necessary to load and initialize the Binary Portable DLL, and
provide access to the internal functions. This library is provided in source code form and
has support for popular operating systems and compilers. All the loader library code is
pure ANSI C code, so should be portable to any operating system and CPU family.

Drivers for the SciTech SNAP Graphics Architecture are generally located in the
following standard locations on the end users system:

Operating System Default Directory Location
MSDOS c:\snap\drivers
Windows 95/98/Me c:\windows\system\snap
Windows NT/2k/XP c:\winnt\system32\snap
OS/2 c:\os2\drivers\snap
Linux /usr/lib/snap
QNX 4.x /qnx4/snap/bin
QNX 6.x /nto/snap/<arch>/bin

In many cases the above directories are relative to the operating system root directory,
so the drive letters may be different depending on how the operating system was
installed. Note also that the user may set the SNAP_PATH environment variable and the
loader library will check in this directory for the driver file(s). If the driver cannot be
found in the global device driver directory, the loader library will also look in the
current directory so that applications may ship OEM versions of the drivers local to their
application.

Note also that the locations for the Windows and OS/2 operating systems are in the
standard device driver directories, and may not necessarily be located in the
c:\windows or c:\os2 directories.

For On Time RTTarget-32 target system without RTFiles-32 filesystem support, the
SNAP Graphics BPD files will be bound into the RTB binary image, so it is entirely

SciTech SNAP, Graphics Architecture 20

Programming with SNAP Graphics

optional whether you use file paths or not. Refer to the example RTTarget-32
configuration files provided with SNAP and MGL demos courtesy of On Time
Informatik.

Enumerating Installed Devices and Loading a Driver
Before you can use the SciTech SNAP Graphics Architecture library, you must first
enumerate all the devices in the system and load a device driver for the selected device
that you wish to control. Enumerating the devices in the system is done using the
GA_enumerateDevices function. This function returns a count of the number of display
devices installed in the system. Then you call GA_loadDriver to load and initialize a valid
device driver for the device you wish to control. The primary display device is always
device index 0, and the first secondary controller is device index 1, the next is device
index 2 and so on. When you are finished you must then call GA_unloadDriver to unload
the device driver from memory. If you only need to support the primary display
controller, you can skip the call to GA_enumerateDevices and simply call GA_loadDriver
with a device index of 0. For example:

void main(void)
{
 GA_devCtx *dc;

 if ((dc = GA_loadDriver(0)) == NULL)
 PM_fatalError(“Unable to load graphics driver!”);
 ... do some stuff with the driver
 GA_unloadDriver(dc);
}

Locating and Calling Device Driver Functions
Once you have a pointer to the device driver context structure, you then need to locate
the pointers to the device driver functions of interest. Once a graphics device driver is
loaded, the GA_queryFunctions function is the single entry point where you can query
the driver to determine what functions it supports and to obtain pointers to those
functions. All of the functions in the device driver are grouped together into functional
groups, and you can obtain pointers to each individual group of functions by calling
GA_queryFunctions with the identifier of the group you are interested in. If the driver
does not support a particular group of functions, it may return FALSE, indicating the
hardware device does not support that entire function group. Within a particular group
of functions, certain entry points may be set to NULL if the driver or hardware does not
support that particular feature within the group.

For example in order to call the GetVideoModeInfo function to enumerate the available
display modes, you need to fill in the structure of pointers to the main init functions. To
do this, use the following code (make sure you fill in the dwSize member with the size of
the structure you are passing in!):

GA_initFuncs initFuncs;

bool LoadInitFuncs(GA_devCtx *dc)
{
 initFuncs.dwSize = sizeof(initFuncs);
 if (!GA_queryFunctions(dc,GA_GET_INITFUNCS,&initFuncs))

SciTech SNAP, Graphics Architecture 21

Programming with SNAP Graphics

 return false;
 return true;
}

Once you have the list of function pointer for the function group you are interested in,
you can simply call the returned functions via the function pointers contained within the
structure. Make sure you first check that the function pointer is not NULL, since it is
valid for optional functions to be returned as NULL by the loaded drivers.

Note: You must obtain a copy of all function groups (except the GA_initFuncs group) every
time that you change display modes, as the features and capabilities of the driver and/or
hardware device may change between different screen resolutions and color depths.

Querying Device Configuration Information
Once you have a driver loaded and initialized, it is sometimes useful to inform the user
what type of device was detected. Once you have a pointer to the device driver
initialization function group, you can use the GetConfigInfo function to get complete
information about the manufacturer of the installed device, the name of the device as
well as information about when the device driver was tested and certified. All the
information is returned in the GA_configInfo structure, and can be obtained as follows:

ibool GetConfigInfo(GA_devCtx *dc)
{
 GA_initFuncs initFuncs;
 GA_configInfo info;

 initFuncs.dwSize = sizeof(initFuncs);
 if (!GA_queryFunctions(dc,GA_GET_INITFUNCS,&initFuncs))
 return false;
 info.dwSize = sizeof(info);
 init.GetConfigInfo(&info);
 // do something useful with the information!
 return true;
}

Note: Make sure you initialize the dwSize member of the GA_configInfo structure to the size of
the structure being passed to GetConfigInfo!

Working With Display Modes

This section discusses how to determine what display modes are supported by the
installed device, how to change refresh rates and how to update the list of available
display modes.

Finding Available Display Modes
Before any of the drawing functions can be called, one of the supported display modes
must be initialized by the application program by calling the SetVideoMode function. The
SciTech SNAP Graphics Architecture does not define a standard display mode
numbering scheme but rather relies on the application to search through the list of
available display modes for one that has the desired resolution and pixel depth. In order
to find a valid video mode number to be passed to SetVideoMode, the GetVideoModeInfo

SciTech SNAP, Graphics Architecture 22

Programming with SNAP Graphics

function is used to obtain specific information about all of the available video modes
supported by the loaded driver. The list of available video modes is stored in the
AvailableModes field of the GA_devCtx structure. Once the desired display mode has
been identified, this display mode number can be used in the call to SetVideoMode.

The general procedure you would normally follow to find the identifier for a display
mode with a particular X and Y resolution is as follows:

N_uint16 FindGraphicsMode(
 GA_devCtx *dc,
 int xRes,
 int yRes,
 int bitsPerPixel)
{
 GA_initFuncs init;
 GA_modeInfo modeInfo;
 N_uint16 *modes;

 /* Load the driver init functions */
 init.dwSize = sizeof(init);
 if (!GA_queryFunctions(dc,GA_GET_INITFUNCS,&init))
 return 0xFFFF;

 /* Search for the display mode */
 for (modes = dc->AvailableModes; *modes != 0xFFFF; modes++) {
 modeInfo.dwSize = sizeof(modeInfo);
 if (init.GetVideoModeInfo(*modes,&modeInfo) != 0)
 continue;
 if (modeInfo.Attributes & gaIsTextMode)
 continue;
 if (modeInfo.XResolution == xRes &&
 modeInfo.YResolution == yRes &&
 modeInfo.BitsPerPixel == bitsPerPixel)
 return *modes;
 }
 return 0xFFFF;
}

Refresh Rate Control
Once you have found the identifier for the display mode you wish to use, you can then
call the SetVideoMode function to set the display mode. One of the parameters to the
SetVideoMode function is the refresh rate to be used for the mode. In most normal
situations you would pass a value of 0 for this parameter, which will set the currently
selected default refresh rate for the mode. However it is possible for the application to
directly specify the refresh rate to be used via two different methods.

The first method is to pass the desired refresh rate to the SetVideoMode function as a
specific value in Hz (ie: the integer value 60 for 60Hz etc). However this will only work
if the refresh rate requested is actually supported by the display mode, so you need to
first determine what refresh rates are supported. One of the bits of information returned
by the GetVideoModeInfo function, is a complete list of all refresh rates for that display
mode. This list of refresh rates will be properly filtered based on the capabilities of the
underlying graphics hardware and the attached monitor (assuming a monitor has been
selected by the user or detected automatically by Plug and Play). If you pass a value that

SciTech SNAP, Graphics Architecture 23

Programming with SNAP Graphics

is not listed in the information block returned by the GetVideoModeInfo function, the
SetVideoMode function will return –1, indicating failure.

The second method allows for refresh rates that are not listed as part of the drivers
standard timings, such that an application can provide an exact set of CRTC timings to
be used for the display mode (useful for flat panels and fixed frequency displays).
Alternatively if the application just needs a non-standard, custom refresh rate, the
application can use the VESA Generalised Timing Formula (GTF) functions provided to
compute a set of generic CRTC timings for any arbitrary display mode and refresh rate
(see GA_computeCRTCTimings). Once the application has used the GTF functions to
compute a set of CRTC timings for the display mode, those CRTC timings can then be
passed directly to the SetVideoMode function along with use of the gaRefreshControl mode
flag. This second method provides for the maximum versatility and support for
specialised applications (such as fixed frequency monitors, LC stereo shutter glasses and
head mounted displays).

Using Custom Display Modes
Although the SciTech SNAP Graphics Architecture exports a list of supported display
modes, internally there is actually no real concept of a standard display mode. Instead
SciTech SNAP Graphics maintains a profile of known display modes, and uses that
profile to enumerate to applications what display modes are available. The profile of
known display modes also includes supported refresh rates, and that information is
used to create the GA_modeInfo information returned by the GetVideoModeInfo function.
When the application calls the regular SetVideoMode function, internally the drivers end
up calling the SetCustomVideoMode function with the resolution and CRTC timings for
the known display mode taken from the mode profile.

Sometimes special applications may require the need to set a custom display mode that
is not listed in the regular profile of known display modes. To set a completely custom
display mode, you can call the SetCustomVideoMode function directly and pass in your
own set of CRTC timings that match the display mode of choice (use
GA_computeCRTCTimings to compute the CRTC timings with the GTF formulas). Note
however that not all resolutions can be supported by all hardware (for instance some
hardware requires the X resolution to be on 8 pixel boundaries, some 16 pixel
boundaries). In order to determine if a desired custom resolution is actually supported
by the hardware, you should call the GetCustomVideoModeInfo function. This function
will properly round up the resolution parameters as necessary to support the mode on
the underlying hardware.

Note: You can also add a custom display mode to the default mode profile as an alternative to
always calling the SetCustomVideoMode function.

2D Coordinate System

All the device driver accelerator functions take coordinates in a local framebuffer
coordinate system, which is established with a call to the SetDrawBuffer function. The
coordinate system starts with (0,0) at the start of the active drawing buffer and

SciTech SNAP, Graphics Architecture 24

Programming with SNAP Graphics

increments the X coordinate for every pixel and Y coordinate for every scanline. For
instance in an 8-bit display mode, if the logical scanline width is set to 1024 bytes and
the drawing buffer offset is set to 0, then the coordinate (0,1) will be rendering into the
byte at location 1024 from the start of framebuffer memory. It is then up to the
application to impose any other logical coordinate system on top of the graphics device
driver routines, such as handling viewport mapping etc. Also note that clipping is
generally not implemented by most of the drawing functions, so all drawing must be
clipped by the application code in software before calling the low level device driver
code (some functions do however provide clipping support where doing clipping in
software prior to calling the function can be expensive compared to doing it in the
hardware drivers).

The SetDrawBuffer function must be called to initialise the active drawing buffer for all
subsequent rendering functions, before any drawing takes place. It takes as a parameter
a structure which defines the offset, pitch, width and height of the drawing buffer to be
used in video memory. In general you will simply set the draw buffer offset to 0, the
pitch to the value returned in the bytesPerLine parameter from the SetVideoMode function
and the width and height to the dimensions of the display mode. For example the
following code can be used to initialise the drawing buffer for single buffered
environments:

 GA_modeInfo modeInfo;
 GA_buffer drawBuf;

 ... assume modeInfo has been filled in ...
 drawBuf.dwSize = sizeof(drawBuf);
 drawBuf.Offset = 0;
 drawBuf.Stride = modeInfo.BytesPerScanLine;
 drawBuf.Width = modeInfo.XResolution;
 drawBuf.Height = modeInfo.YResolution;
 if (state2d.SetDrawBuffer(&drawBuf) != 0)
 PM_fatalError(“Unable to set draw buffer!”);

For a display mode of 1024x768 this would result in the logical coordinate system
similar to the following:

Buffer 0 (active)

(0,0) (1024,0)
drawBuf.Offset

(0,768)
(1024,

768)

Note: You must be careful when calling the SetDrawBuffer function because some hardware has
special restrictions on the starting offset and scanline stride values for offscreen video
memory buffers. To simplify offscreen memory management, please use the buffer manager
functions provided by the GA_bufferFuncs function group to create and manage all flip
buffers and offscreen buffers, which automatically account for these hardware
requirements.

SciTech SNAP, Graphics Architecture 25

Programming with SNAP Graphics

Multi Buffering
Multi buffering can be achieved by using the SetDrawBuffer function to draw to a
different location in video memory combined with the SetDisplayStart function to change
the display start address to a different location in video memory. It is up to the
application to determine how to divide up the display memory into the multiple display
buffers, but for multi-buffering it is recommended that the display buffer offset always
be aligned to a multiple of the scanline width for the display mode for maximum
compatibility.

In the examples below we examine the case of multi buffering using two buffers, which
is usually called double buffering. If enough offscreen video memory is available, multi
buffing with more than 2 buffers can be useful because it allows applications to draw
continuously without waiting for the vertical retrace when swapping the currently
active visible buffer. For example:

 activePage = 0;
 visiblePage = 1;
 drawBuf.dwSize = sizeof(drawBuf);
 drawBuf.Offset = modeInfo.BytesPerScanLine *
 (modeInfo.YResolution * activePage);
 drawBuf.Stride = modeInfo.BytesPerScanLine;
 drawBuf.Width = modeInfo.XResolution;
 drawBuf.Height = modeInfo.YResolution;
 if (state2d.SetDrawBuffer(&drawBuf) != 0)
 PM_fatalError(“Unable to set draw buffer!”);
 if (driver.SetDisplayStart(
 modeInfo.BytesPerScanLine *
 (modeInfo.YResolution * visiblePage));

will change the logical framebuffer layout in memory to the following:

Buffer 0 (active)

(0,0) (1024,0)
drawBuf.Offset

(0,768)
(1024,

768)

Buffer 1 (visible)

All drawing output is sent to the currently active buffer (buffer 0), and all video data is
displayed from the currently visible buffer (buffer 1). Double buffering is achieved by
using SetDrawBuffer to always draw to the hidden display buffer, and SetDisplayStart to
make the CRT controller always display from a different buffer to the one that is
currently being drawn into. The visible image can then be instantly updated by

SciTech SNAP, Graphics Architecture 26

Programming with SNAP Graphics

swapping the new visible buffer to the buffer that was currently being rendered into
with code similar to the following:

 activePage = 1;
 visiblePage = 0;
 drawBuf.dwSize = sizeof(drawBuf);
 drawBuf.Offset = modeInfo.BytesPerScanLine *
 (modeInfo.YResolution * activePage);
 drawBuf.Stride = modeInfo.BytesPerScanLine;
 drawBuf.Width = modeInfo.XResolution;
 drawBuf.Height = modeInfo.YResolution;
 if (state2d.SetDrawBuffer(&drawBuf) != 0)
 PM_fatalError(“Unable to set draw buffer!”);
 if (driver.SetDisplayStart(
 modeInfo.BytesPerScanLine *
 (modeInfo.YResolution * visiblePage));

will change the logical framebuffer layout in memory to the following:

Buffer 0 (visible)

drawBuf.Offset

(0,768)
(1024,

768)

Buffer 1 (active)

(0,0) (1024,0)

Note: If you plan to utilize offscreen memory to store bitmap data, please use the buffer manager
functions provided by the GA_bufferFuncs function group to create and manage all flip
buffers and offscreen buffers. The buffer functions will provide for maximum compatibility
across multiple hardware devices, properly accounting for hardware buffer alignment
requirements for storing buffers in offscreen video memory.

Accessing Offscreen Video Memory
Offscreen video memory on the controller can be used for caching bitmap information to
be used for fast BitBlt and SrcTransBlt operations for sprite animation. It can also be
used to cache offscreen bitmap data for fast GUI operations. Drawing to offscreen
display memory can be done in one of three ways. The first way is to simply use
coordinates past the last Y coordinate for the currently active draw buffer, which is most
useful when blitting cached bitmap data from offscreen video memory to display
memory. The second way is to use the SetDrawBuffer function to make the offscreen
memory the active draw buffer with the same dimensions as the main display screen.
This will work on all controllers and is similar to multi-buffering mentioned above, but
you never display from the offscreen buffer (note that you need to properly account for

SciTech SNAP, Graphics Architecture 27

Programming with SNAP Graphics

the hardware alignment requirements for the offscreen buffer starting address and
scanline pitch).

The third method is to use the SetDrawBuffer function to set the active drawing buffer to
a non-conforming offscreen memory buffer on hardware that can support this. This is
most useful for setting up offscreen ‘surfaces’ with a possibly different set of dimensions
to the main display mode (similar to DirectX offscreen surfaces). The first two methods
should be relatively straight forward, but the following code can be used to implement
the third case for a 320x240 8bpp buffer starting at the 1Mb memory boundary:

 drawBuf.dwSize = sizeof(drawBuf);
 drawBuf.Offset = 1048576; // 1Mb offset
 drawBuf.Stride = 320;
 drawBuf.Width = 320;
 drawBuf.Height = 240;
 if (state2d.SetDrawBuffer(&drawBuf) != 0)
 PM_fatalError(“Unable to set draw buffer!”);

Note that for non-conforming draw buffers, you must ensure that the Offset and Stride
members are aligned to the necessary alignment values defined in the BitmapStartAlign
and BitmapStridePad members of the GA_devCtx structure (some hardware requires the
use of the AlignLinearBuffer function instead to properly align the buffers). Also be
prepared for SetDrawBuffer to fail if the hardware cannot do this, as lots of older
hardware is not capable of supporting non-conforming draw buffers. The above code
essentially sets up the following framebuffer layout:

Frame Buffer

(1024,0)

drawBuf.Offset

(0,768)
(1024,

768)

Offscreen
Buffer

(320,0)

(0,240) (320,240)

(0,0)

(0,0)

Note: If you plan to utilize offscreen memory to store bitmap data, please use the buffer manager
functions provided by the GA_bufferFuncs function group to create and manage all flip
buffers and offscreen buffers. The buffer functions will provide for maximum compatibility
across multiple hardware devices, properly accounting for hardware buffer alignment
requirements for storing buffers in offscreen video memory.

SciTech SNAP, Graphics Architecture 28

Programming with SNAP Graphics

Virtual Buffer Scrolling
Virtual scrolling functionality is selected by passing values other than -1 for the VirtualX
and VirtualY parameters to the SetVideoMode function. By passing values other than -1
for the X and Y dimentions of the display mode, you will get a virtual mode such that
the width of height of the mode is larger than the physically displayed image. Then you
can use the SetDisplayStart function to change the display start address and scroll
around within the display memory. The value passed to the SetDisplayStart function is a
byte address in video memory for 8-bit and higher modes, so to move the display start
address to the 10th pixel and 50th line you would use the following code:

 if (driver.SetDisplayStart(
 modeInfo.BytesPerScanLine * 50 +
 10 * bytesPerPixel);

Don’t forget that if you set a virtual display mode, that you must set the drawBuf.Stride
value to the bytesPerLine value that was returned by the SetVideoMode function and not
the value stored in the GA_modeInfo structure for the mode! Some hardware devices
have restrictions on the pitch that can be programmed for display modes, and this is
taken into account when the driver initializes a virtual scrolling mode.

Palette Programming During Double Buffering
If you wish to re-program the palette at the same time as performing double buffering (if
the palette changes between frames during double buffering) then you should call the
SetDisplayStart function first with the wait for retrace flag set, then immediately following
you should program as many palette values as you can before the end of the retrace
period. Note that on some older graphics devices and slower computers, you cannot
program an entire set of 256 color lookup table entries during the retrace period before
the onset of snow, so you will need to stagger the palette change over 2 or more retrace
periods. Generally most devices can handle about 100-120 palette entries to be
programmed per retrace (most newer hardware does not produce snow at all, so you
can program all 256 at once).

Integer Coordinates
Integer coordinates are passed as 32-bit signed integers to the accelerated rendering
functions. For the most part the hardware drawing functions perform any kind of
clipping, so it is up to the application to ensure that all coordinates passed to the
accelerated rendering functions are within the range of the currently active drawing
buffer. The exception to this rule is the ClipMonoImage, StretchBlt and clipped line
drawing family of functions.

Color Values
All color values passed to the accelerated rendering functions are packed pixel values,
that will need to be pre-packed into the proper format required by the current
framebuffer mode. In 8 bit color index modes, this is simply a color index between 0 and
255. In the 15 bits per pixel and above modes, you will need to pack the color values
according to the RGB pixel format information stored in the GA_modeInfo information
block. The RGB pixel format information specifies the mask size and bit positions for all

SciTech SNAP, Graphics Architecture 29

Programming with SNAP Graphics

red, green, blue and alpha components (alpha is generally ignored for framebuffer
values). These mask should be used by the application to pack the appropriate RGB
color values into a 32-bit integer to be passed to the appropriate rendering routines.

Currently the alpha component in 15-bit and 32-bits per pixel modes is unused, and
should always be set to 0 for normal 2D rendering operations, as on some controllers
these bits may be significant. For alpha blended operations, these bits can be used to
control the blending of pixel colors during rendering.

Direct Framebuffer Access

In order to allow both direct framebuffer access and hardware accelerator access,
contention for video memory between the application program and the hardware
accelerator must be properly handled. This is provided by the EnableDirectAccess and
DisableDirectAccess functions. If the EnableDirectAccess function pointer is not NULL,
then you must call these functions prior to performing any direct access to the
framebuffer via either the banked framebuffer or the linear framebuffer, and then call
DisableDirectAccess before calling any other hardware accelerator functions again.

If the EnableDirectAccess function is NULL, you must instead call the WaitTillIdle function
to ensure the hardware has completed the last drawing operation before accessing the
framebuffer directly. You need not call any other functions to return to accelerated
rendering again.

When the video mode is first initialized, the hardware is automatically set up for
hardware accelerated rendering, as though DisableDirectAccess was called immediately
after setting the display mode.

Hardware Triple Buffering

Hardware triple buffering is supported in the SciTech SNAP Graphics Architecture
specification by allowing the application to schedule a display start address change, and
then to later determine the status of the last scheduled display start address change. The
SetDisplayStart function is used to schedule the display start address change, and the
GetDisplayStartStatus function is used to determine the status of the last scheduled
change. The following steps outline how to use hardware triple buffering:

1. Display from the first visible buffer, and render to the second hidden buffer.

2. Schedule a page flip for the second hidden buffer that you just finished
rendering with a call to SetDisplayStart with the waitVRT flag set to 0, and start
rendering immediately to the third hidden buffer. The CRT controller will be
currently displaying from the first buffer.

3. Before scheduling the page flip for the third hidden buffer, wait until the last
scheduled change has occurred by calling GetDisplayStartStatus until it returns
non-zero. Schedule the page flip for the third hidden buffer (call SetDisplayStart
with the waitVRT flag set to 0 again) and immediately begin rendering to the first

SciTech SNAP, Graphics Architecture 30

Programming with SNAP Graphics

hidden buffer. The CRT controller will be currently displaying from the second
buffer.

4. Repeat step 3 over and over cycling though each of the buffers.

Although the above method does require a spin loop polling on the
GetDisplayStartStatus, in most cases when this function is called the page flip will
already have occurred and the spin loop will time out immediately. The only time that
this cannot occur is if the application is drawing at a frame rate in excess of the current
hardware refresh rate (i.e.: in excess of 60-85 frames per second), and the resulting frame
rate for the application will be pegged at the hardware refresh rate.

Using the Buffer Manager

The SciTech SNAP Graphics Architecture supports drawing on and copying video
memory data to and from offscreen video memory and the display screen. Although the
core functionality is provided via the SetDrawBuffer function, the SciTech SNAP
Graphics Architecture also supports a higher level interface to video memory
mangement via the Buffer Manager. The Buffer Manager functions are provided
through the GA_bufferFuncs function group, and implement support for allocating,
freeing, displaying and copying data to and from offscreen video memory buffers. The
buffers can be allocated entirely in video memory, entirely in system memory or to fall
back to system memory when video memory runs out. The buffers can also be allocated
as fixed or moveable buffers in video memory, where moveable buffers can be moved
around in video memory by the buffer manager to collect free video memory for future
buffer allocations. Buffers can also be implemented as discardable buffers with a system
memory buffer cache, such that non-critical buffers can be pushed out to system
memory automatically when more video memory is needed.

Using the Buffer Manager is actually quite simple. The first thing to do is to allocate the
primary display buffer along with a set number of ‘flippable’ buffers that can be made
visible for page flipping and animation. This is done using the InitBuffers function,
where you will pass in the total number of flippable buffers that you need. To display a
flippable buffer and make it visible, you would pass a pointer to the buffer to the
FlipToBuffer function (pointers to the flip buffers can be obtained using the
GetFlippableBuffer function). By default after initializing the buffer manager, all drawing
will go to the first buffer or ‘primary’ buffer in the flippable buffers list. To make another
buffer active for drawing, the SetActiveBuffer function is used. After this function is
called, all drawing using the functions in the GA_2DRenderFuncs function group will go
to the newly active buffer.

Apart from flippable buffers, it is also possible to allocate arbitrary sized buffers in
offscreen video memory using the AllocBuffer function. You can allocate buffers with
many different types of attributes with dimensions smaller or larger than the current
display mode (some hardware does not support offscreen buffers larger than the display
mode though). Once you have allocated the buffers, you can use them just like flippable

SciTech SNAP, Graphics Architecture 31

Programming with SNAP Graphics

buffers in that you can draw on them and copy between them, you just can’t make them
directly visible via the FlipToBuffer function.

Once you have allocated a buffer (whether it is a flippable buffer or a regular offscreen
buffer), if you wish to directly access the video memory in the buffer, you must use the
LockBuffer and UnlockBuffer functions. Once you have called the LockBuffer function, the
Surface pointer of the GA_buf structure will point to a linear memory access that can be
used to directly access the surface of the buffer. Prior to calling the LockBuffer function,
the Surface pointer will be set to NULL (and will be reset to NULL after calling the
UnlockBuffer function). The LockBuffer function also returns a physical memory address
of the buffer in video memory, which can be used to program the video memory
address into hardware DMA engines (note that not all drivers will support returning a
physical memory address, and this will be 0 if not supported).

You can also directly copy data from any buffer to another buffer using the BitBltBuf and
related functions. This allows you to copy data between any source buffer and the
currently active buffer, with all features normally available in the hardware such as
color key transparency, stretching, blending and more.

Note: Another reason to use the buffer manager is that internally the SciTech SNAP Graphics
Architecture drivers may utilize the buffer manager when it is enabled to speed up some
software rendering functions through partial hardware acceleration. Until the application
or shell driver enables the buffer manager, that functionality will not be enabled and those
functions will run entirely in software.

 Also note that if you are using the DirectX SNAP driver on Microsoft Windows, you
must use the buffer manager functions to manage offscreen video memory. Directly
calling on this driver is not supported.

Hardware Video Overlay Functions

Hardware video playback with multiple, independent overlay windows can be
implemented on compatible devices using the hardware video playback functions. The
functions provided by the GA_videoFuncs function group provide a simple interface to
hardware video playback. The application software does all of the decoding of video
frames, and the graphics driver can be used to display the video data with hardware
stretching and color space conversion. The steps to use hardware video playback are as
follows:

1. Determine the hardware video playback capabilities for the graphics mode with
the GetVideoModeInfo function and examining the VideoWindows member of the
GA_modeInfo structure. There is one structure in theVideoWindows list for each
available hardware overlay window. Each video window may have different
capabilities, so be sure to look for the one that supports what you need (generally
the first one in the list is the most capable).

2. Allocate an offscreen video buffer of the correct dimensions and pixel format for
the source video image you wish to display using the AllocVideoBuffer function.

SciTech SNAP, Graphics Architecture 32

Programming with SNAP Graphics

This function might fail if there is not enough video memory available, or you
request an input pixel format that is not supported.

3. Set the video window output rectangle on the screen with the SetVideoOutput
function. This function also lets you specify what features are used for displaying
the video, such as interpolation and color keying.

4. Set the hardware video color key, if applicable, using the SetVideoColorKey
function.

5. Call StartVideoFrame to set up for decoding the next frame of data. Calling this
function effectively makes a call to LockBuffer for the video buffer, such that the
video memory is locked down for direct memory access.

6. Decode the frame of data into the buffer returned by AllocVideoBuffer above.

7. Call EndVideoFrame to complete the decoding of the video data and display it on
the screen.

8. Repeat steps 4-6 until the video playback is complete.

Stereoscopic Liquid Crystal Shutter Glasses

Stereoscopic liquid crystal (LC) shutter glasses are a cheap, easy solution for getting real
3D stereoscopic imaging out of a standard PC with any standard monitor. LC shutter
glasses work by constantly blanking out video information for each eye in a sequential
fashion, allowing the user to see the left image for a fraction of a second followed by the
right image, followed by the left image again etc. In order to make LC shutter glasses
work effectively on PC based graphics controllers, some mechanism for changing the
displayed video information at every vertical retrace is necessary. New hardware is
available that will do this automatically, and the graphics device driver defines the
software interface necessary to allow applications to use these new hardware features.

The steps involved in enabling free running stereoscopic support are as follows:

1. Set the mode via SetVideoMode (using a high refresh rate if possible, such as
120Hz to 150Hz).

2. Enable free running stereoscopic mode by calling EnableStereoMode with a value
of TRUE.

3. Draw the images for both the left and right eye images by using the
SetDrawBuffer function to draw the left and right eye buffers (either side by side
or above/below formats will work). Once both left and right eye images are
rendered, the visible display buffer can be swapped as per normal using the
SetStereoDisplayStart function. This function takes the byte offset of the left and
right images as parameters, and the hardware will automatically flip between the
left and right eye images at every vertical retrace.

SciTech SNAP, Graphics Architecture 33

Programming with SNAP Graphics

4. To temporarily disable stereoscopic rendering, call the SetStereoDisplayStart
function with both the left and right start addresses set to the same buffer.
Although the hardware will still be in stereo mode, the screen image will not
change every vertical retrace period.

5. Disable free running stereoscopic mode by calling EnableStereoMode with a value
of FALSE when you are done with stereoscopic viewing.

Refresh rates and stereoscopic imaging
When the hardware is running in free running stereoscopic mode and an image or 3D
scene is being viewed through LC shutter glasses, the user will see the resulting image at
half the original refresh rate through the shutter glasses. Hence a normally acceptable
display running at 60Hz becomes a hard to view display running at 30Hz stereoscopic.
For this reason when running in stereoscopic modes it is desirable to significantly
increase the refresh rate of the graphics mode to values as high as 120Hz to 150Hz
(depending on the monitors capabilities), which provides for 60Hz or 75Hz refresh per
eye in stereoscopic modes.

The graphics device driver has full support for refresh rate control when setting a
display mode via the SetVideoMode function. Stereoscopic applications can use this
functionality in combination with the VESA GTF standard to increase the refresh rate of
the stereoscopic application to acceptable levels (see the above section on refresh rate
control for more information).

Software driven display start address swapping
If the hardware does not support a free running stereoscopic display mode, a timer
driven, software driven stereoscopic display can be supported on some platforms. See
the GA_softStereoInit function for information on how to set up software stereo support
on supported platforms.

Developing for Maximum Compatibility

This section contains information relating to developing application software with
maximum compatibility in mind, without sacrificing performance or features. Although
this document defines how the specification should work, there are many different
flavors of hardware out in the field. It is very important that you design your application
with the following special cases in mind so that your application will run on the widest
variety of hardware possible.

One of the common mistakes that many developers make when they first start
developing graphics code, is to assume the graphics card they have in their system is a
representative sample of what exists in the field. Although the driver interface will be
identical on another graphics card, the capabilities and attributes that card reports may
be very different. This section deals with explaining the most common pitfalls that
plague developers first starting to develop graphics code.

SciTech SNAP, Graphics Architecture 34

Programming with SNAP Graphics

Support Both 15-bit and 16-bits Per Pixel Modes
Many new games and applications have support for 15-bit and 16-bits per pixel high
color modes. If you wish to support these modes, don’t make the mistake of assuming
that all devices will support 16-bit high color modes, or that all devices will support 15-
bit high color modes. There are devices in the field that support only 15-bit modes, and
there are also devices in the field that support only 16-bit modes. Hence it is of vital
importance that your application code support both of these color depths to ensure
maximum compatibility.

Support Both 24-bit and 32-bits per Pixel Modes
If you are developing code to support 24-bit true color rendering, be prepared to find
controllers in the field that have the true color modes supported as either 24-bits per
pixel (3 bytes per pixel) or 32-bits per pixel (4 bytes per pixel). Generally the 32-bits per
pixel modes are faster because the pixels can be written with a single CPU double word
access, however 32-bits per pixel modes require more memory than the equivalent 24-bit
modes. Hence be prepared to find controllers in the field that have only 24-bit modes,
only 32-bit modes or both.

Do Not Assume Support for Double Scanned Modes
If you are developing a game or application that wishes to support 320x200, 320x240 or
400x300 modes (in any color depth), be prepared for situtations where these modes do
not exist. To be able to initialize these modes on today’s hardware requires support for
double scanning, and there are some controllers in the field that do not support this. On
these controllers these modes can never be supported, so your application or game must
be able to deal with the situation if these modes do not exist.

In lieu of these modes not being available, the controller may provide support for
320x400, 320x480 and 400x600 modes which do not require double scanning. One neat
solution is to support these modes by rendering your frames to a system memory buffer
with a resolution 320x200, 320x240 or 400x300, and then do a copy to display memory
with a 2x vertical stretch (just duplicate every scanline twice in software). The end result
will look identical to a real 320x200, 320x240 or 400x300 mode, and you will only lose a
small amount in overall performance.

Developing for Specific Hardware in Embedded Systems

This section contains information related to developing software for specific hardware in
embedded systems. Because the specific hardware configuration is “fixed” in a typical
embedded system, some of the features which make SNAP Graphics versatile in an
enterprise desktop environment may need to be stripped down or disabled altogether
when configured for an embedded environment. This is particularly applicable to any
auto-detection features which might be used during initialization of the SNAP Graphics
chipset driver.

SciTech SNAP, Graphics Architecture 35

Programming with SNAP Graphics

Customize SNAP Graphics configuration files for run-time image
Embedded systems with a specific hardware configuration known in advance may
include customized SNAP Graphics configuration files in the run-time image. It would
be worthwhile for the developer to spend some time understanding the various
configuration files used by SNAP Graphics.

The configuration files for SNAP Graphics are usually located in a subdirectory below
the SNAP Graphics driver path. Certain embedded OS file-systems which do not
support full directory paths may require grouping the configuration files together with
the driver files. OnTime RTTarget-32 and Microsoft Windows CE are two such systems.
Refer to the ReadMe notes included with the SNAP Graphics distribution for the
respective embedded OS about configuration file details.

Global options can be used for disabling certain auto-detection features or other default
behavior which may not be applicable to the embedded system device. These global
options conditionally handle steps like DDC monitor detection and even CPU clock
speed calibration, and are explained in more detail in the section below. The global
options are consolidated in a single file ‘options.dat’. Refer to the GA_globalOptions
structure definition and the GA_saveGlobalOptions function for more details.

Chipset specific options are used internally for saving device output state info
pertaining to display modes. This options file uses a unique name corresponding to the
chipset name. Refer to GA_saveOptions and related functions for more details.

CRTC timings and monitor info are generated during SNAP Graphics driver loading as
crtc**.dat and mon**.dat files respectively for each display output head. The CRTC
data files are generated whenever previous copies cannot be detected, and the monitor
data files are generated when DDC devices are attached. Retrieving these data files on
subsequent instances will be faster than attempting to regenerate them, so it they might
as well be included in the run-time image.

Mode lists can be customized to contain only one single mode to ever be used by the
embedded device, which will minimize list management overhead. A single particular
display mode can be specified as part of the SNAP Graphics license provided by SciTech
Software Inc. to the embedded device customer.

Optimize SNAP Graphics options for fastest loading time
Once a development cycle is completed for an embedded system application using
SNAP Graphics, certain options can be disabled to speed up driver loading time in the
release version of the product.

The generation of the SNAP Graphics log file ’graphics.log’ can be disabled since the
embedded OS file-system is expected to be read-only. Although no fatal errors occur if
left enabled by default, unnecessary calls to formatted print and file I/O can be avoided
altogether when explicitly disabled.

SciTech SNAP, Graphics Architecture 36

Programming with SNAP Graphics

Embedded devices using LCD displays usually do not need DDC monitor detection, so
disabling DDC detection option will avoid delays from “device-not-found” time-outs.

Embedded system CPUs will likely be running at a fixed clock speed known in advance
for a particular product model. Specifying the CPU clock speed will avoid the time delay
otherwise incurred for the CPU clock calibration step.

Refer to the SNAP Graphics SDK examples for setting SNAP Graphics global options in
the GA_globalOptions structure and saving them to disk file. Below is a code fragment for
setting all of the global options discussed in this section.

 glb.dwSize = sizeof(glb);
 GA_getGlobalOptions(&glb,SHARED_MEM);
 glb.bDisableLogFile = true;
 glb.bNoDDCDetect = true;
 glb.bNoCPUCalibration = true;
 glb.dwCPUClockSpeed = CPU_SPEED; // in MHz
 GA_setGlobalOptions(&glb);
 GA_saveGlobalOptions(&glb);

Note: Make sure you initialize the dwSize member of the GA_globalOptions structure to the size
of the structure being passed to GA_getGlobalOptions!

SciTech SNAP, Graphics Architecture 37

Graphics Device Driver Overview

This section contains the function and data structure references for the SciTech SNAP
Graphics Architecture API. The following overview sections group related functions
together, to help you find the specific functions of interest.

Overview of Global Functions

This section contains an overview of all the global functions in the SciTech SNAP
Graphics Architecture API. The global functions are called directly as regular C function
calls within the application or shell driver, and are accessible to the application by
linking with the n_ga library.

Driver Loading and Initialization Functions
These global functions provide support for loading and initializing the device driver, for
querying groups of function pointers from the driver by the application software.

GA_enumerateDevices GA_errorMsg
GA_getGlobalOptions GA_getSNAPConfigPath
GA_loadDriver GA_loadRef2d
GA_loadRegionMgr GA_queryFunctions
GA_readGlobalOptions GA_saveGlobalOptions
GA_saveOptions GA_setActiveDevice
GA_setGlobalOptions GA_status
GA_unloadDriver GA_unloadRef2d
GA_unloadRegionMgr REF2D_loadDriver
REF2D_queryFunctions REF2D_unloadDriver

Display Mode Management Functions

These global functions provide support for managing the list of available display modes,
CRTC timings and refresh rates.

GA_addMode GA_addRefresh
GA_computeCRTCTimings GA_delMode
GA_disableVBEMode GA_enableVBEMode
GA_getCRTCTimings GA_getMaxRefreshRate
GA_loadModeProfile GA_restoreCRTCTimings
GA_saveCRTCTimings GA_saveModeProfile
GA_setCRTCTimings GA_setDefaultRefresh
GA_useDoubleScan

SciTech SNAP, Graphics Architecture 39

Graphics Device Driver Overview

Rectangle Arithmetic Functions
These global macros provide simplified support for managing rectangles and
performing simple arithmetic on them. Note that all these functions are actually
implemented as C style macros for performance.

GA_equalRect GA_emptyRect
GA_disjointRect GA_sectRect
GA_sectRectFast GA_sectRectCoord
GA_sectRectFastCoord GA_unionRect
GA_unionRectCoord GA_offsetRect
GA_insetRect GA_ptInRect

Monitor Detection Functions

These global functions provide support for detecting, parsing and saving to disk
information about the attached display monitors via the VESA DDC Plug and Play
specification.

DDC_init DDC_initExt
DDC_readEDID DDC_writeEDID
EDID_parse GA_detectPnPMonitor
GA_getParsedEDID GA_saveMonitorInfo

Monitor Database Functions

These global functions provide support for managing the SciTech SNAP Graphics
Architecture monitor database.

MDBX_close MDBX_first
MDBX_flush MDBX_getErrCode
MDBX_getErrorMsg MDBX_importINF
MDBX_insert MDBX_last
MDBX_next MDBX_open
MDBX_prev MDBX_update

Monitor Command Set Functions

These global functions provide support for interfacing with VESA DDC/CI compatible
monitors using the VESA Monitor Command Set (MCS) interface.

SciTech SNAP, Graphics Architecture 40

Graphics Device Driver Overview

MCS_begin MCS_beginExt
MCS_enableControl MCS_end
MCS_getCapabilitiesString MCS_getControlMax
MCS_getControlValue MCS_getControlValues
MCS_getSelfTestReport MCS_getTimingReport
MCS_isControlSupported MCS_resetControl
MCS_saveCurrentSettings MCS_setControlValue
MCS_setControlValues

Overview of Queried Function Groups

This section contains an overview of all the function groups available via the SciTech
SNAP Graphics Architecture API. Unlike the global functions, these functions are not
called directly, but instead are called via groups of function pointers that are returned by
the GA_queryFunctions function. As such each function group is relative to the specific
group of functions that the function pointer belongs in. In the detailed function reference
section, these functions are actually documented in the data structures section,
underneath the named data structure containing the function pointers themselves.

Display Driver Initialization Functions
These functions are members of the GA_initFuncs group. The functions form the main
device driver functions that allow the application to enumerate the available display
modes, set a display mode as well as access various house keeping functions.

AlignLinearBuffer GetActiveHead
GetCertifyInfo GetClosestPixelClock
GetConfigInfo GetCRTCTimings
GetCurrentRefreshRate GetCurrentVideoModeInfo
GetCustomVideoModeInfo GetCustomVideoModeInfoExt
GetDisplayOutput GetMonitorInfo
GetNumberOfHeads GetOptions
GetUniqueFilename GetVideoMode
GetVideoModeInfo GetVideoModeInfoExt
PerformDisplaySwitch PollForDisplaySwitch
SaveCRTCTimings SaveRestoreState
SetActiveHead SetCRTCTimings
SetCustomVideoMode SetDisplayOutput
SetGlobalRefresh SetModeProfile
SetMonitorInfo SetOptions
SetRef2dPointer SetSoftwareRenderFuncs
SetVideoMode SwitchPhysicalResolution

SciTech SNAP, Graphics Architecture 41

Graphics Device Driver Overview

Device Driver Control Functions
These functions are members of the GA_driverFuncs group. The functions form the
main device driver functions that allow the application to change the display start
address, program the color palette, program the gamma correction ramp and
synchronize with the vertical refresh of the display.

EnableStereoMode GetCurrentScanLine
GetDisplayStartStatus GetGammaCorrectData
GetGammaCorrectDataExt GetPaletteData
GetPaletteDataExt GetVSyncWidth
IsVSync SetBank
SetDisplayStart SetDisplayStartXY
SetGammaCorrectData SetGammaCorrectDataExt
SetPaletteData SetPaletteDataExt
SetStereoDisplayStart SetVSyncWidth
WaitVSync

2D Rendering State Functions

These functions are members of the GA_2DStateFuncs group. The functions provide
support for changing the hardware 2D rendering state for the driver, such as
downloading 8x8 monochrome and color patterns, setting the mix mode and line stipple
pattern.

BuildTranslateVector DisableDirectAccess
EnableDirectAccess IsIdle
Set8x8ColorPattern Set8x8MonoPattern
SetAlphaValue SetBackColor
SetBlendFunc SetDrawBuffer
SetForeColor SetLineStipple
SetLineStippleCount SetLineStyle
SetMix SetPlaneMask
Use8x8ColorPattern Use8x8MonoPattern
Use8x8TransColorPattern Use8x8TransMonoPattern
WaitTillIdle

2D Drawing Functions

These functions are members of the GA_2DRenderFuncs group. These functions provide
support for drawing all the different 2D primitives that the device driver supports.

SciTech SNAP, Graphics Architecture 42

Graphics Device Driver Overview

BitBlt BitBltBM
BitBltColorPatt BitBltColorPattBM
BitBltColorPattLin BitBltColorPattSys
BitBltFx BitBltFxBM
BitBltFxLin BitBltFxSys
BitBltFxTest BitBltLin
BitBltPatt BitBltPattBM
BitBltPattLin BitBltPattSys
BitBltPlaneMasked BitBltPlaneMaskedBM
BitBltPlaneMaskedLin BitBltPlaneMaskedSys
BitBltSys ClipEllipse
ClipMonoImageLSBBM ClipMonoImageLSBLin
ClipMonoImageLSBSys ClipMonoImageMSBBM
ClipMonoImageMSBLin ClipMonoImageMSBSys
DrawBresenhamLine DrawBresenhamStippleLine
DrawBresenhamStyleLine DrawClippedBresenhamLine
DrawClippedBresenhamStippleLine DrawClippedBresenhamStyleLine
DrawClippedLineInt DrawClippedStippleLineInt
DrawClippedStyleLineInt DrawColorPattEllipseList
DrawColorPattFatEllipseList DrawColorPattRect
DrawColorPattScanList DrawColorPattTrap
DrawEllipse DrawEllipseList
DrawFatEllipseList DrawLineInt
DrawPattEllipseList DrawPattFatEllipseList
DrawPattRect DrawPattScanList
DrawPattTrap DrawRect
DrawRectExt DrawRectLin
DrawScanList DrawStippleLineInt
DrawStyleLineInt DrawTrap
DstTransBlt DstTransBltBM
DstTransBltLin DstTransBltSys
GetBitmapBM GetBitmapSys
GetPixel PutMonoImageLSBBM
PutMonoImageLSBLin PutMonoImageLSBSys
PutMonoImageMSBBM PutMonoImageMSBLin
PutMonoImageMSBSys PutPixel
SrcTransBlt SrcTransBltBM
SrcTransBltLin SrcTransBltSys
StretchBlt StretchBltBM
StretchBltLin StretchBltSys
UpdateScreen

SciTech SNAP, Graphics Architecture 43

Graphics Device Driver Overview

Buffer Manager Functions

These functions are members of the GA_bufferFuncs group. The functions provide
support for allocating, freeing, copying and drawing on offscreen video memory buffers.
The buffer manager functions should always be used to manage offscreen surfaces when
possible, for maximum performance and compatibility.

AllocBuffer BitBltBuf
BitBltColorPattBuf BitBltFxBuf
BitBltPattBuf BitBltPlaneMaskedBuf
DrawRectBuf DstTransBltBuf
FlipToBuffer FlipToStereoBuffer
FreeBuffer GetClipper
GetFlippableBuffer GetFlipStatus
GetPrimaryBuffer InitBuffers
LockBuffer SetActiveBuffer
SetClipper SrcTransBltBuf
StretchBltBuf UnlockBuffer
UpdateCache UpdateFromCache
WaitTillFlipped

Complex Region Management Functions

These functions are members of the GA_regionFuncs group. The functions provide
support for allocating, freeing, copying and performing arithmetic on complex regions.
Complex regions are used by graphical user interface environments to provide complex
visible region clipping support.

ClearRegion CopyIntoRegion
CopyRegion DiffRegion
DiffRegionRect FreeRegion
IsEmptyRegion IsEqualRegion
NewRectRegion NewRegion
OffsetRegion OptimizeRegion
PtInRegion SectRegion
SectRegionRect TraverseRegion
UnionRegion UnionRegionOfs
UnionRegionRect GA_isSimpleRegion

Hardware Video Overlay Functions

These functions are members of the GA_videoFuncs group. The functions provide
support for multiple hardware video overlay windows, allowing the application to
define the input and output dimensions of the video overlay, as well as being able to
start and end decoding for each video frame.

SciTech SNAP, Graphics Architecture 44

Graphics Device Driver Overview

AllocVideoBuffer EndVideoFrame
FreeVideoBuffer SetVideoColorKey
SetVideoOutput StartVideoFrame

Hardware Cursor Functions

These functions are members of the GA_cursorFuncs group. The functions provide
support for hardware cursors, allowing the application to change the cursor shape,
change its position and make it visible on the screen.

BeginAccess EndAccess
IsHardwareCursor SetColorCursor
SetColorCursor256 SetColorCursorRGB
SetColorCursorRGBA SetCursorPos
SetMonoCursor SetMonoCursorColor
ShowCursor

SciTech SNAP, Graphics Architecture 45

Graphics Device Driver Reference

This section contains the function reference for the SciTech SNAP, Graphics
Architecture.

SciTech SNAP, Graphics Architecture 47

Graphics Device Driver Reference

External Functions

SciTech SNAP, Graphics Architecture 48

Graphics Device Driver Reference

DDC_init

Checks to see if DDC communication is available.

Declaration
int NAPI DDC_init(
 GA_devCtx *dc)

Prototype In
snap/ddc.h

Parameters
dc SNAP device driver to use for communications

Return Value
One of the DDC_errCode error return values.

Description
Obsolete. Use DDC_initExt() instead.

See Also
DDC_initExt

SciTech SNAP, Graphics Architecture 49

Graphics Device Driver Reference

DDC_initExt

Checks to see if DDC communication is available.

Declaration
int NAPI DDC_initExt(
 GA_devCtx *dc,
 N_int32 iChannel)

Prototype In
snap/ddc.h

Parameters
dc SNAP device driver to use for communications
iChannel DDC channel to use for communications (0 for primary

monitor)

Return Value
One of the DDC_errCode error return values.

Description
This function initializes the DDC communications module. After checking that the I2C
interface is working, this function will then attempt to initialize the DDC
communication channel and verify that DDC2B communication is possible. If DDC2B is
not available, this function will return a value of ddcNoCommunication (ie: cannot
communicate with slave). The most likely cause of this failure condition is that there is
no DDC capable monitor attached to the graphics device.

Note: If this function returns a value of ddcNotAvailable, it means the installed graphics device
does not support DDC comunications.

See Also
DDC_readEDID, DDC_initExt

SciTech SNAP, Graphics Architecture 50

Graphics Device Driver Reference

DDC_readEDID

Attempts to read the EDID information block from the monitor.

Declaration
ibool NAPI DDC_readEDID(
 N_int32 slaveAddr,
 uchar *edid,
 N_int32 length,
 N_int32 blockNumber,
 N_int32 iChannel)

Prototype In
snap/ddc.h

Parameters
slaveAddr Slave address to read the EDID data from
edid Place to store the EDID information read
length Number of bytes of EDID data to read
blockNumber EDID block number to read (generally 0)
iChannel DDC channel to use for communications (0 for primary

monitor)

Return Value
True on success, false for invalid checksum or communications error.

Description
This function attempts to read the EDID information from the DDC2B slave. This
function also does a checksum on the incoming EDID data, and if the checksum fails will
return false. The slave address that is passed to this function should be 0xA0 to read the
regular 128 byte EDID for the DDC 2.0 specification.

For DDC 3.0 you can pass in values of 0xA2 and 0xA6 for the Plug and Display and
FPDI 256 byte extended EDID blocks respectively.

See Also
DDC_initExt, EDID_parse

SciTech SNAP, Graphics Architecture 51

Graphics Device Driver Reference

DDC_writeEDID

Attempts to write the EDID information block to the monitor.

Declaration
ibool NAPI DDC_writeEDID(
 GA_devCtx *dc,
 N_int32 slaveAddr,
 uchar *edid,
 N_int32 length,
 N_int32 blockNumber,
 N_int32 iChannel)

Prototype In
snap/ddc.h

Parameters
dc SNAP device driver to use for communications
slaveAddr Slave address to write the EDID data to (ie: 0xA0 for EDID

2)
edid Place to store the EDID information read
length Number of bytes of EDID data to read
blockNumber EDID block number to write (generally 0)
iChannel DDC channel to use for communications (0 for primary

monitor)

Return Value
True on success, false on error.

Description
This function attempts to write the EDID information to the monitor. Most monitors
allow writing of the EDID data to the monitor so that they can be configured during
factory testing and setup. This feature is used to reprogram the EDID information in a
monitor in the field. Note that in order to re-program the EDID information in the
monitor, you need to ensure that the VSYNC is held high for the duration of writes to
the EDID, as this is the write protection used by the monitor.

See Also
DDC_initExt, DDC_readEDID

SciTech SNAP, Graphics Architecture 52

Graphics Device Driver Reference

EDID_parse

Parse the binary EDID block from the monitor into useful information.

Declaration
int NAPI EDID_parse(
 uchar *edid,
 EDID_record *rec,
 N_int32 requireDescriptor)

Parameters
edid EDID information block to parse
rec Place to store monitor config record
requireDescriptor True if the the descriptor block is required

Return Value
1 if valid EDID, 2 if old EDID, 0 if not found.

Description
This function parses the information in the EDID information block and attempts to fill
in a structure containing detailed, useful information. Specifically this function finds
information such as the maximum horizontal and vertical frequencies, maximum
resolution and a list of all known standard and detailed timings. It also extracts the
monitor manufacturer name, model name, serial numbers, manufacture date and other
useful information.

If you pass a value of true for requireDescriptor and the EDID block does not contain
valid operational limits information, this function will return a value of 2. This indicates
that the EDID was parsed successfully, however the operational limits are missing from
the data. If you call this function again with requireDescriptor set to false, the returned
operational limits are derived from the list of standard and detailed timings in the EDID
block, so may not be completely accurate for the attached monitor.

See Also
DDC_initExt, DDC_readEDID

SciTech SNAP, Graphics Architecture 53

Graphics Device Driver Reference

GA_addMode

Add a custom display mode to the device driver.

Declaration
ibool NAPI GA_addMode(
 GA_devCtx *dc,
 N_int32 xRes,
 N_int32 yRes,
 N_int32 bits,
 N_int32 saveToDisk)

Prototype In
snap/graphics.h

Parameters
dc Device context for driver to add mode to
xRes X resolution of the mode to add
yRes Y resolution of the mode to add
bits Bits per pixel for the mode to add
saveToDisk True if the mode profile should be saved to disk

Return Value
True on success, or false if the mode could not be added.

Description
This function is used to add a new display mode to a device. By default a standard table
of display modes is available in the device, however this function allows the user to
create custom display modes and add those to the SNAP drivers.

Unless you pass a value of true to the saveToDisk parameter, the changes will only
affect the currently loaded copy of SNAP and will not affect new versions of SNAP that
are loaded from disk. To make the change permanent, you need to set this parameter to
true.

Note: In order to enable support for the newly added mode for VESA VBE applications, you
must also call the GA_enableVBEMode for the same resolution and color depth before it
will show up.

See Also
GA_addRefresh, GA_delMode, GA_enableVBEMode

SciTech SNAP, Graphics Architecture 54

Graphics Device Driver Reference

GA_addRefresh

Add a custom refresh rate for a mode to the CRTC database.

Declaration
ibool NAPI GA_addRefresh(
 GA_devCtx *dc,
 N_int32 xRes,
 N_int32 yRes,
 N_int32 refresh,
 N_int32 saveToDisk)

Prototype In
snap/graphics.h

Parameters
dc Device context for driver to add mode to
xRes X resolution of the mode to add
yRes Y resolution of the mode to add
refresh New refresh rate to add
saveToDisk True if the mode profile should be saved to disk

Return Value
True on success, or false if the refresh rate could not be added.

Description
This function is used to add a custom refresh rate to the CRTC database for a device. By
default a standard databse of known display modes is available, but this function allows
the user to create custom refresh rates and add those to the SNAP drivers.

Unless you pass a value of true to the saveToDisk parameter, the changes will only
affect the currently loaded copy of SNAP and will not affect new versions of SNAP that
are loaded from disk. To make the change permanent, you need to set this parameter to
true.

See Also
GA_addMode, GA_delMode

SciTech SNAP, Graphics Architecture 55

Graphics Device Driver Reference

GA_computeCRTCTimings

Compute the VESA GTF timings for a display mode

Declaration
ibool NAPI GA_computeCRTCTimings(
 GA_devCtx *dc,
 GA_modeInfo *modeInfo,
 N_int32 refreshRate,
 N_int32 interlaced,
 GA_CRTCInfo *crtc,
 N_int32 pureGTF)

Prototype In
snap/graphics.h

Parameters
dc Device context for driver to compute timings for
modeInfo SuperVGA mode information block for the mode
refreshRate Desired refresh rate to generate timings for
interlaced True if the CRTC timings should be interlaced
crtc Place to store the computed CRTC timings
pureGTF True to use pure GTF formulas

Return Value
True on success, or false if refresh rate is out of range.

Description
This function computes a set of CRTC timings for the specific graphics mode at the
specified refresh rate. The CRTC timings are computed using the VESA GTF timing
formulas, combined with information returned by the SNAP driver. Note that the exact
refresh rate that you get will not be exactly what you requested, and the exact value is
returned in the CRTC information block block.

If the pureGTF parameter is set to true, we will leave the CRTC timings as is after the
GTF formulas have computed the appropriate timings for the refresh rate given the
closest available pixel clock. This means that we may not be able to hit a specific refresh
rate exactly, but the CRTC timings will be GTF compliant. In some cases it may be more
beneficial to hit an exact refresh rate on the nail (such as when viewing sterero images)
and in order to do this we will modify the horizontal and vertical totals slightly to
compensate for the granularity in the pixel clock (which in some cases may be quite
large).

See Also
GA_getMaxRefreshRate

SciTech SNAP, Graphics Architecture 56

Graphics Device Driver Reference

GA_delMode

Delete a display mode for the device.

Declaration
ibool NAPI GA_delMode(
 GA_devCtx *dc,
 N_int32 xRes,
 N_int32 yRes,
 N_int32 bits,
 N_int32 saveToDisk)

Prototype In
snap/graphics.h

Parameters
dc Device context for driver to add mode to
xRes X resolution of the mode to add
yRes Y resolution of the mode to add
bits Bits per pixel for the mode to add
saveToDisk True if the mode profile should be saved to disk

Return Value
True on success, or false if the mode could not be deleted.

Description
This function is used to add a delete a display mode for a device. By default a standard
table of display modes is available in the device, however this function allows the user
to remove unwanted display modes from the SNAP drivers.

Unless you pass a value of true to the saveToDisk parameter, the changes will only
affect the currently loaded copy of SNAP and will not affect new versions of SNAP that
are loaded from disk. To make the change permanent, you need to set this parameter to
true.

See Also
GA_addMode, GA_addRefresh, GA_disableVBEMode

SciTech SNAP, Graphics Architecture 57

Graphics Device Driver Reference

GA_detectPnPMonitor

Detects a Plug and Play monitor attached to the graphics card

Declaration
int NAPI GA_detectPnPMonitor(
 GA_devCtx *dc,
 GA_monitor *monitor,
 ibool *hasChanged)

Prototype In
snap/graphics.h

Parameters
dc Device context for the device to do detection for
monitor Place to store the returned monitor information.
hasChanged Place to store whether the monitor has changed

Return Value
0 if no DDC monitor, 1 if found, 2 if found without operational limits

Description
This function performs DDC monitor detection for the passed in device context. If the
monitor is found, it is returned in the monitor parameter. Note that if we detect an older
DDC monitor that does not have operational limits, we use the PNPID from the monitor
EDID to search for the correct entry in our monitor database and return those values
instead. This allows us to correct for badly formed monitor EDID information present in
early monitors (ie: EDID's prior to 1.1).

Note that this function will also return whether the monitor information has changed
from the monitor record passed into the function. If the values have changed in anyway
the 'changed' parameter will be set to true otherwise it will be set to false.

Note: This function assumes that the system is already in graphics mode. Some device's will not
allow PnP monitor detection unless the graphics card is running in hires graphics mode,
so you should ensure this is the case before calling this function.

See Also
GA_saveMonitor, GA_getParsedEDID

SciTech SNAP, Graphics Architecture 58

Graphics Device Driver Reference

GA_disableVBEMode

Disable a display mode for use by VESA VBE applications.

Declaration
ibool NAPI GA_disableVBEMode(
 GA_devCtx *dc,
 N_int32 xRes,
 N_int32 yRes,
 N_int32 bits,
 N_int32 saveToDisk)

Prototype In
snap/graphics.h

Parameters
dc Device context for driver to add mode to
xRes X resolution of the mode to add
yRes Y resolution of the mode to add
bits Bits per pixel for the mode to add
saveToDisk True if the mode profile should be saved to disk

Return Value
True on success, or false if the mode could not be deleted.

Description
This function is used to disable a specific display mode for use by VESA VBE
applications in a DOS box environment.

Unless you pass a value of true to the saveToDisk parameter, the changes will only
affect the currently loaded copy of SNAP and will not affect new versions of SNAP that
are loaded from disk. To make the change permanent, you need to set this parameter to
true.

See Also
GA_enableVBEMode, GA_addMode, GA_delMode

SciTech SNAP, Graphics Architecture 59

Graphics Device Driver Reference

GA_disjointRect

Determines if two rectangles are disjoint.

Declaration
ibool GA_disjointRect(
 GA_rect r1,
 GA_rect r2)

Prototype In
snap/graphics.h

Parameters
r1 First rectangle to test
r2 Second rectangle to test

Return Value
True if the rectangles are disjoint, false if they overlap.

Description
This function determines whether two rectangles are disjoint, which is true if the
rectangles do not overlap at any coordinates.

See Also
GA_emptyRect, GA_equalRect, GA_unionRect, GA_sectRect

SciTech SNAP, Graphics Architecture 60

Graphics Device Driver Reference

GA_emptyRect

Determines if a rectangle is empty.

Declaration
ibool GA_emptyRect(
 GA_rect r)

Prototype In
snap/graphics.h

Parameters
r The rectangle to test

Return Value
True if the rectangle is empty, otherwise false.

Description
Determines if a rectangle is empty or not. A rectangle is defined as being empty if the
right coordinate is less than or equal to the left coordinate, or if the bottom coordinate is
less than or equal to the top coordinate.

SciTech SNAP, Graphics Architecture 61

Graphics Device Driver Reference

GA_enableVBEMode

Enable a display mode for use by VESA VBE applications.

Declaration
ibool NAPI GA_enableVBEMode(
 GA_devCtx *dc,
 N_int32 xRes,
 N_int32 yRes,
 N_int32 bits,
 N_int32 saveToDisk)

Prototype In
snap/graphics.h

Parameters
dc Device context for driver to add mode to
xRes X resolution of the mode to add
yRes Y resolution of the mode to add
bits Bits per pixel for the mode to add
saveToDisk True if the mode profile should be saved to disk

Return Value
True on success, or false if the mode could not be added.

Description
This function is used to enable a specific display mode for use by VESA VBE
applications in a DOS box environment. Many early VESA applications do not correctly
handle large mode lists returned by the VBE driver, so only a specific subset of modes
are actually reported to the VBE application by the SNAP VBE emulation driver. This
function is used to enable support for specific modes that the user desires on a mode by
mode basis.

Unless you pass a value of true to the saveToDisk parameter, the changes will only
affect the currently loaded copy of SNAP and will not affect new versions of SNAP that
are loaded from disk. To make the change permanent, you need to set this parameter to
true.

Note: Modes added to this list only affect the filtering mechanism for VESA VBE applications.
A mode will not be available unless it is first added to the standard mode list for the SNAP
driver using GA_addMode (or if the mode is a standard mode already supported).

See Also
GA_disableVBEMode, GA_addMode, GA_delMode

SciTech SNAP, Graphics Architecture 62

Graphics Device Driver Reference

GA_enumerateDevices

Enumerates the number of display devices on the PCI bus.

Declaration
int NAPI GA_enumerateDevices(
 N_int32 shared)

Prototype In
snap/graphics.h

Parameters
shared True if the device driver should be loaded into shared memory

Return Value
Number of display devices found.

Description
This function enumerates the number of available display devices on the PCI bus, and
returns the number found. The number of devices allows you to load graphics drivers
for each device, but calling GA_loadDriver starting with device 0 and up to the maximum
number of devices-1. Note that even though we may enumarate a valid PCI display
device, it is possible that no graphics driver is available for the device and the
GA_loadDriver function could fail.

Hence this function does not enumerate all the devices and match them up with valid
graphics drivers; the matching to available drivers is done when you call GA_loadDriver.

See Also
GA_loadDriver

SciTech SNAP, Graphics Architecture 63

Graphics Device Driver Reference

GA_equalRect

Compares two rectangles for equality.

Declaration
ibool GA_equalRect(
 GA_rect r1,
 GA_rect r2)

Prototype In
snap/graphics.h

Parameters
r1 First rectangle to compare
r2 Second rectangle to compare

Return Value
True if the rectangles are equal, false if not.

Description
Compares two rectangles for equality.

SciTech SNAP, Graphics Architecture 64

Graphics Device Driver Reference

GA_errorMsg

Returns a descriptive string for a device loader error code.

Declaration
const char * NAPI GA_errorMsg(
 N_int32 status)

Prototype In
snap/graphics.h

Parameters
status Status code to get string for

Return Value
String describing error condition.

Description
Returns a descriptive string for a device loader error code.

Note: The string is returned in a temporary buffer that is reused. Hence the calling application
should copy the returned string to a different buffer immediately after calling this function
and before calling any other SNAP functions.

See Also
GA_status

SciTech SNAP, Graphics Architecture 65

Graphics Device Driver Reference

GA_getCRTCTimings

Get the CRTC timings for a specific display mode and refresh rate

Declaration
ibool NAPI GA_getCRTCTimings(
 GA_devCtx *dc,
 GA_modeInfo *modeInfo,
 N_int32 refreshRate,
 GA_CRTCInfo *crtc)

Prototype In
snap/graphics.h

Parameters
dc Device context to save CRTC timings information for
modeInfo Display mode information block
refreshRate Refresh rate to retrieve the CRTC timings for
crtc Place to store the retrieved CRTC timings

Return Value
True on success, false on error.

Description
This function obtains the CRTC timings for a particular display mode and refresh rate
from the internal CRTC timings database. If the resolution and/or refresh rate is not
supported by the display mode, this function returns false.

See Also
GA_saveCRTCTimings, GA_restoreCRTCTimings, SetCRTCTimings

SciTech SNAP, Graphics Architecture 66

Graphics Device Driver Reference

GA_getCurrentRef2d

Gets a copy of the current SNAP reference rasteriser for the specified device index.

Declaration
REF2D_driver * NAPI GA_getCurrentRef2d(
 N_int32 deviceIndex)

Prototype In
snap/graphics.h

Parameters
deviceIndex Index of the device to obtain the SNAP reference rasteriser

for

Return Value
Pointer to current SNAP reference rasteriser on success, NULL on failure.

Description
This returns a copy of the current SNAP reference rasteriser driver for the specified
device index. This function will return NULL if the driver has not been loaded (ie:
SciTech Display Doctor is not the primary display driver in the system). The primary
purpose of this function is to allow operating system utilities and applications to access
a copy of the existing, shared SNAP driver used by the display driver in the system.

Note: Do not call GA_unloadRef2d with the value returned from this function!!

See Also
GA_loadRef2d, GA_getCurrentDriver

SciTech SNAP, Graphics Architecture 67

Graphics Device Driver Reference

GA_getDaysLeft

Returns the number of days left in the evaluation license

Declaration
int NAPI GA_getDaysLeft(
 N_int32 shared)

Prototype In
snap/graphics.h

Return Value
Number of days left in evaluation license, -1 if registered, 0 if timed out.

Description
This function checks the number of days left in the evaluation period. If the product has
been registered this function returns a value of -1, otherwise it returns the number of
days left in the evaluation period.

SciTech SNAP, Graphics Architecture 68

Graphics Device Driver Reference

GA_getDisplaySerialNo

Returns the user serial number as an ASCII string

Declaration
const char * NAPI GA_getDisplaySerialNo(ibool shared)

Prototype In
snap/graphics.h

Parameters
shared True if the device driver should be loaded into shared memory

Return Value
Serial number as an ASCII string.

Description
This function can be used to get an ASCII string version of the user serial number that
can be displayed for the user. This is a printable version of the serial number, and does
not contain the actual registration code information (ie: it is a serial number that can be
used to look up the user in a customer database).

OEM versions of the product always return “N/A” for this function.

Note: The string is returned in a temporary buffer that is reused. Hence the calling application
should copy the returned string to a different buffer immediately after calling this function
and before calling any other SNAP functions.

SciTech SNAP, Graphics Architecture 69

Graphics Device Driver Reference

GA_getDisplayUserName

Returns the user name as an ASCII string

Declaration
const char * NAPI GA_getDisplayUserName(ibool shared)

Prototype In
snap/graphics.h

Parameters
shared True if the device driver should be loaded into shared memory

Return Value
User name or OEM company name as an ASCII string.

Description
This function can be used to get an ASCII string version of the user name or OEM
company name (for OEM versons) that that can be displayed for the user.

Note: The string is returned in a temporary buffer that is reused. Hence the calling application
should copy the returned string to a different buffer immediately after calling this function
and before calling any other SNAP functions.

SciTech SNAP, Graphics Architecture 70

Graphics Device Driver Reference

GA_getFakePCIID

Returns the internal fake PCI ID for ISA/VLB devices

Declaration
const char * NAPI GA_getFakePCIID(void)

Prototype In
snap/graphics.h

Description
This internal function returns the fake PCI device ID as a string from the library. This
value is only valid for ISA/VLB devices, and is used so that ISA/VLB devices can be
cleanly integrated into the PCI detection and certification system.

Note: The string is returned in a temporary buffer that is reused. Hence the calling application
should copy the returned string to a different buffer immediately after calling this function
and before calling any other SNAP functions.

SciTech SNAP, Graphics Architecture 71

Graphics Device Driver Reference

GA_getGlobalOptions

Returns the current global options from the graphics device driver.

Declaration
void NAPI GA_getGlobalOptions(
 GA_globalOptions *options,
 ibool shared)

Prototype In
snap/graphics.h

Parameters
options Place to store the returned options information
shared True if the device driver should be loaded into shared memory

Description
This function returns a structure which contains global configuration options effecitve
for the installed devices.

Note: The dwSize member of the profile structure is intended for future compatibility, and must
be set to the size of the structure before calling this function. Only the number of bytes set
in the dwSize member will be copied into the callers structure.

See Also
GA_setGlobalOptions, GA_saveGlobalOptions

SciTech SNAP, Graphics Architecture 72

Graphics Device Driver Reference

GA_getInternalName

Returns the internal binary driver name for the device

Declaration
const char * NAPI GA_getInternalName(
 N_int32 deviceIndex)

Prototype In
snap/graphics.h

Parameters
deviceIndex Index of device to get driver name for

Description
This internal function returns the internal binary driver name for the device. This
information is only useful for QA purposes, and may change over time.

Note: The string is returned in a temporary buffer that is reused. Hence the calling application
should copy the returned string to a different buffer immediately after calling this function
and before calling any other SNAP functions.

SciTech SNAP, Graphics Architecture 73

Graphics Device Driver Reference

GA_getLicensedDevices

Returns the list of licensed device types for the license files

Declaration
N_uint32 * NAPI GA_getLicensedDevices(
 ibool shared)

Prototype In
snap/graphics.h

Parameters
shared True if the device driver should be loaded into shared memory

Return Value
List of licensed device types, NULL if not an OEM licensed product.

Description
This function can be used to get a numerical list of all licensed device types stored in the
license file. This is used by control panel applets like the DDStereo control panel to
determine what stereo glasses types are licensed by the OEM vendor. This list is always
terminated with a value of 0x10101010.

Note: The array returned by this function lives in a temporary buffer that is reused. Hence the
calling application should copy the returned array to a different buffer immediately after
calling this function and before calling any other SNAP functions.

SciTech SNAP, Graphics Architecture 74

Graphics Device Driver Reference

GA_getMaxRefreshRate

Determine the maximum refresh rate for a particular display mode

Declaration
void NAPI GA_getMaxRefreshRate(
 GA_devCtx *dc,
 GA_modeInfo *modeInfo,
 N_int32 interlaced,
 float *maxRefresh)

Prototype In
snap/graphics.h

Parameters
dc SNAP device context to use
modeInfo SuperVGA mode information block for the mode
interlaced True if the mode should be interlaced or not
maxRefresh Place to store maximum refresh rate in Hz.

Description
This function computes the maximum refresh rate for the graphics modes specified by
the passed in mode information block. The maximum refresh rate is computed from the
information returned by the SNAP driver, using CRTC values computed using the
VESA GTF formulas.

See Also
GA_computeCRTCTimings

SciTech SNAP, Graphics Architecture 75

Graphics Device Driver Reference

GA_getParsedEDID

Returns the parsed EDID record if a DDC monitor was found

Declaration
int NAPI GA_getParsedEDID(
 GA_devCtx *dc,
 EDID_record *rec)

Prototype In
snap/graphics.h

Parameters
dc Device context to retrieve the EDID record for
rec Place to return the parsed edid record

Return Value
True if DDC monitor found and EDID was valid, false if no valid DDC monitor

Description
This function returns the existing, parsed EDID record for the primary monitor for the
specific device context. If no valid EDID record was obtained from the monitor when the
driver was loaded, this function returns false.

See Also
GA_detectPnPMonitor

SciTech SNAP, Graphics Architecture 76

Graphics Device Driver Reference

GA_getSNAPConfigPath

Returns the currently active SNAP configuration file path

Declaration
const char * NAPI GA_getSNAPConfigPath(void)

Prototype In
snap/graphics.h

Return Value
Path to currently active SNAP configuration files

Description
This function returns the path to the currently active SNAP configuration files on the
system. User applications that need to access the monitor database and other
configuration files directly should use this function to find the location of those files,
rather than the PM_getSNAPConfigPath function. The reason is that the PM library
version always returns the current system global configuration path, while this versions
returns the currently active versions. It is possible for SNAP to be located relative to the
application directory, and this function will return the correct path if this is the case.

Note: The string is returned in a temporary buffer that is reused. Hence the calling application
should copy the returned string to a different buffer immediately after calling this function
and before calling any other SNAP functions.

SciTech SNAP, Graphics Architecture 77

Graphics Device Driver Reference

GA_insetRect

Insets the coordinates of a rectangle.

Declaration
void GA_insetRect(
 GA_rect r,
 int dx,
 int dy)

Prototype In
snap/graphics.h

Parameters
r Rectangle to inset
dx Amount to inset the x coordinates by
dy Amount to inset the y coordinates by

Description
This functions insets the rectangle by the specified values. This function effectively
performs the following operation on the rectangle:

left += dx;
top += dy;
right -= dx;
bottom -= dy;

See Also
GA_offsetRect

SciTech SNAP, Graphics Architecture 78

Graphics Device Driver Reference

GA_isLiteVersion

Returns true if the product is the Lite retail product.

Declaration
int NAPI GA_isLiteVersion(ibool shared)

Prototype In
snap/graphics.h

Parameters
shared True if the device driver should be loaded into shared memory

Return Value
True if the Lite retail product, false if not.

Description
This function can be used to determine if the product is the Lite version of the retail
product, or the full Profesional version. OEM versions of the product always return false
for this function.

SciTech SNAP, Graphics Architecture 79

Graphics Device Driver Reference

GA_isOEMVersion

Returns true if the product is an OEM licensed product.

Declaration
int NAPI GA_isOEMVersion(
 ibool shared)

Prototype In
snap/graphics.h

Parameters
shared True if the device driver should be loaded into shared memory

Return Value
True if an OEM licensed product, false if not.

Description
This function can be used to determine if the product is an OEM licensed version of
SNAP, or if it is a retail end user version of the product. Retail end user versions always
require a registration code.

SciTech SNAP, Graphics Architecture 80

Graphics Device Driver Reference

GA_isSharedDriverLoaded

Declaration
ibool NAPI GA_isSharedDriverLoaded(void)

SciTech SNAP, Graphics Architecture 81

Graphics Device Driver Reference

GA_isSimpleRegion

Returns true if a region is a simple region, otherwise false.

Declaration
ibool GA_isSimpleRegion(
 const GA_region *r)

Prototype In
snap/graphics.h

Parameters
r Region to test.

Description
This function determines if the region is simple or not. A simple region is one that
consists of only a single rectangle. This function will not work properly if the region has
been through a number of region algebra routines with other non-simple regions, even
though the end result may be a single rectangle.

See Also
UnionRegion, DiffRegion, SectRegion

SciTech SNAP, Graphics Architecture 82

Graphics Device Driver Reference

GA_loadDriver

Loads a graphics driver file from disk for the specified device.

Declaration
GA_devCtx * NAPI GA_loadDriver(
 N_int32 deviceIndex,
 N_int32 shared)

Prototype In
snap/graphics.h

Parameters
deviceIndex Index of device to load driver for (0 for primary controller)
shared True if the device driver should be loaded into shared

memory

Return Value
Pointer to the loaded graphics driver, or NULL on error.

Description
Loads the driver file from disk and intialises the device context ready for use. If the
driver file cannot be found, or the driver does not detect the installed hardware, we
return NULL and the application can get the status code with the N_status function.

Note that for multiple controller support you can specify the device you want to load the
graphics driver for with the deviceIndex parameter. This parameter is 0 for the primary
controller, 1 for the secondary controller and so on. The ordering of the controllers is
determined by their enumeration order on the PCI bus, however device 0 is always the
primary controller.

See Also
GA_setActiveDevice, GA_unloadDriver, N_status, N_errorMsg, GA_isSharedDriverLoaded

SciTech SNAP, Graphics Architecture 83

Graphics Device Driver Reference

GA_loadInGUI

Force the amount of display memory configured for the driver.

Declaration
ibool NAPI GA_loadInGUI(
 N_int32 shared)

Prototype In
snap/graphics.h

Parameters
shared True if the device driver should be loaded into shared memory

Return Value
True on success, false on error.

Description
This function loads the SNAP driver and forces the memory size for subsequently
loaded drivers to the specified size in Kb. The method to detect the amount of installed
display memory on a graphics card in many cases requires the state of the hardware to
be changed temporarily so that the memory size can be detected. This will cause
corruption if a driver is being loaded when native IHV drivers are already running (ie:
as a DDC control panel utility, or a stereo game driver utility). This function is used to
force the memory size and avoid the hardware state change so that loading a driver is
completely non-destructive to the hardware state. The memory size should be obtained
using the native OS system services (such as DirectX).

See Also
GA_loadDriver

SciTech SNAP, Graphics Architecture 84

Graphics Device Driver Reference

GA_loadModeProfile

Load the mode profile information from disk for the specified driver

Declaration
void NAPI GA_loadModeProfile(
 GA_devCtx *dc,
 GA_modeProfile *profile)

Prototype In
snap/graphics.h

Parameters
dc Device context to load mode profile information for
profile Mode profile information block to load

Description
This function loads the mode profile information from disk. The mode profile is the list
of modes that the driver will report to user applications. You can modify this list to
customise the set of display modes that the driver supports.

Note: This function does not update the mode profile in the driver itself, but rather you should
call SetModeProfile to update the internal mode profile first before saving the options to
disk.

See Also
GA_saveModeProfile

SciTech SNAP, Graphics Architecture 85

Graphics Device Driver Reference

GA_loadRef2d

Loads the 2D reference rasteriser device driver chain, including filter drivers.

Declaration
ibool NAPI GA_loadRef2d(
 GA_devCtx _FAR_ *dc,
 N_int32 shared,
 GA_modeInfo _FAR_ *modeInfo,
 N_int32 transferStart,
 REF2D_driver _FAR_ *_FAR_ *drv)

Prototype In
snap/graphics.h

Parameters
dc Device to load reference rasteriser for
shared True if the device driver should be loaded into shared

memory
modeInfo Mode information for the hardware display mode in use
transferStart Start of the offscreen transfer buffer area in bytes
drv Pointer to the place to store loaded driver address

Return Value
True on success, false on failure.

Description
This function loads a copy of the SNAP 2D Reference Rasteriser from disk for use with
the specified hardware display mode. If the user has enabled rotation display support,
or multi-controller display support, this function will load and initialise all the necessary
SNAP filter drivers to enable those functions for the specified display mode.

The transferStart parameter is used to determine where the start of the offscreen display
memory transfer buffer is located. This transfer buffer is used by the Portrait and Multi-
Controller filter drivers for storing temporary bitmap images in offscreen display
memory for enhanced performance. If the amount of memory from the start of the
transfer area to the end of available offscreen display memory is large enough to hold
the transfer buffer (no more than an entire display screen is ever required), then the filter
drivers will use that memory as necessary. If the amount of available memory is less
than required, the filter drivers will use system memory buffers instead. To disable the
use of the transfer buffer, simply pass in a value that is equal to the amount of video
memory on the graphics adapter in bytes.

See Also
GA_unloadRef2d, GA_unloadDriver, GA_getCurrentRef2d

SciTech SNAP, Graphics Architecture 86

Graphics Device Driver Reference

GA_loadRegionMgr

Loads the 2D region manager driver.

Declaration
ibool NAPI GA_loadRegionMgr(
 GA_regionFuncs *funcs,
 PE_MODULE **hModule,
 ulong *size)

Prototype In
snap/graphics.h

Parameters
funcs Pointer to function structure to fill out
hModule Place to store the module handle for the driver
size Place to store the size of the loaded module

Return Value
True on success, false on failure.

Description
This function loads a new copy of the SNAP 2D region manager functions and exports
the function list from the driver. Usually for SNAP graphics applications, the region
functions can simply be obtained from the SNAP 2D reference rasteriser which also
loads a global set of region functions for internal use. However SNAP applications can
use this function to load a separate copy that is indepedant of the reference rasteriser for
internal use by the application.

See Also
GA_unloadRegionMgr

SciTech SNAP, Graphics Architecture 87

Graphics Device Driver Reference

GA_offsetRect

Offsets a rectangle by the specified amount.

Declaration
void GA_offsetRect(
 GA_rect r,
 int dx,
 int dy)

Prototype In
snap/graphics.h

Parameters
r Rectangle to offset
dx Amount to offset x coordinates by
dy Amount to offset y coordinates by

Description
This function offsets the specified rectangle by the dx and dy coordinates. This function
effectively performs the following operation on the rectangle:

left += dx;
top += dy;
right += dx;
bottom += dy;

See Also
GA_insetRect

SciTech SNAP, Graphics Architecture 88

Graphics Device Driver Reference

GA_programMTRRegisters

Programs the MTR registers for the specific graphics device context

Declaration
void NAPI GA_programMTRRegisters(
 GA_devCtx *dc)

Prototype In
snap/graphics.h

Parameters
dc Device context to program MTR registers for

Description
This is an internal function to program the MTR registers that is not usually called from
outside application code. However this function is exposed so that it can be called from
code that resets the machine to the correct state after coming out of a power
management suspend mode.

SciTech SNAP, Graphics Architecture 89

Graphics Device Driver Reference

GA_ptInRect

Returns true if supplied point is within the definition of a rectangle, otherwise false.

Declaration
ibool GA_ptInRect(
 int x,
 int y,
 GA_rect r)

Prototype In
snap/graphics.h

Parameters
x X coordinate of rectangle to test
y Y coordinate of rectangle to test
r Rectangle to test

Return Value
True if supplied point is within the definition of the specified rectangle.

Description
This function tests whether a point is within the bounds of a rectangle or not.

SciTech SNAP, Graphics Architecture 90

Graphics Device Driver Reference

GA_queryFunctions

Returns the function pointers for the specified function group.

Declaration
ibool NAPI GA_queryFunctions(
 GA_devCtx *dc,
 N_uint32 id,
 void _FAR_ *funcs)

Prototype In
snap/graphics.h

Parameters
dc Device driver to return the functions for
id Identifier for the function group to get pointers for
funcs Pointer to function block to fill in

Return Value
True if the requested function group is available, false if not.

Description
This function is the main function that is used by the graphics application code to get a
block of function pointers for a specified function group. The function groups are
defined GA_funcGroupsType enumeration, and breaks up the functions in the device
driver API into groups of logically similar functions. For instance to get the block of
functions for the hardware cursor, you would call this function with the
GA_GET_CURSORFUNCS identifier.

All application and device driver code must call this function and never call the
GA_devCtx->loader.QueryFunctions member directly. This is important because in many
cases special procedures must be followed to allow ring 3 application code to directly
call the function pointers returned by the internal function. The GA_devCtx version
always returns the actual device driver functions which may require that they be called
at ring 0 on some platforms. This function insulates the developer from worrying about
this as the functions returned by this function are always safe to be called from the
context that the code is compiled (ie: this function should be used for all ring 0 device
driver and ring 3 application level code).

Note: To allow for future compatibility, all function blocks begin with a dwSize member. The
caller is expected to fill in the dwSize member with the size of the function block being
retrieved before calling GA_queryFunctions. If the driver exports more functions than the
application knows about, only a subset of the functions are copied to the application. If the
application expects more functions than the driver provides, the non-existant functions
are set to NULL pointers by GA_queryFunctions, and the remainder copies from the
driver.

SciTech SNAP, Graphics Architecture 91

Graphics Device Driver Reference

Note: This mechanism also provides for a clean and simple upgrade path for future drivers,
while ensuring maximum compatibility with existing specifications. New functions for a
particular group can simply be added to the end of the function group to extend that
group. Totally new function groups can be added by defining new identifiers for that
function group, and older drivers will return a NULL if that function group is requested.
Finally if a function group requires a complete redesign to achieve maximum peformance
for next generation hardware, a new extended function group can be defined (and drivers
can continue to export the older and slower function group for backwards compatibility).

See Also
REF2D_queryFunctions

SciTech SNAP, Graphics Architecture 92

Graphics Device Driver Reference

GA_readGlobalOptions

Reads the global options file directly from disk.

Declaration
ibool NAPI GA_readGlobalOptions(
 GA_globalOptions *options)

Prototype In
snap/graphics.h

Parameters
options Place to store the returned options information

Return Value
False if no options file found.

Description
This function is similar to GA_getGlobalOptions, but it does not require SciTech SNAP
Graphics to be loaded at all in order to read the global options file. This is useful for
situations where the memory footprint of loading SciTech SNAP Graphics needs to be
avoided.

Note: The dwSize member of the profile structure is intended for future compatibility, and must
be set to the size of the structure before calling this function. Only the number of bytes set
in the dwSize member will be copied into the callers structure.

See Also
GA_getGlobalOptions, GA_setGlobalOptions, GA_saveGlobalOptions

SciTech SNAP, Graphics Architecture 93

Graphics Device Driver Reference

GA_registerLicense

Registers a linkable library license with the library.

Declaration
int NAPI GA_registerLicense(
 uchar *license,
 N_int32 shared)

Prototype In
snap/graphics.h

Parameters
license Pointer to the binary license to register
shared True if the device driver should be loaded into shared memory

Return Value
True on success, false on failure.

Description
This function is used to register a linkable library license with the graphics library. This
is provided for software vendors who have purchased a linkable library license to use
and distribute the graphics device support library with their custom application
software. Simply pass in a pointer to the binary license structure that was provided to
you by a SciTech Software sales representative.

SciTech SNAP, Graphics Architecture 94

Graphics Device Driver Reference

GA_restoreCRTCTimings

Restore the CRTC timings from disk for the specified driver

Declaration
ibool NAPI GA_restoreCRTCTimings(
 GA_devCtx *dc)

Prototype In
snap/graphics.h

Parameters
dc Device context to save CRTC timings information for

Return Value
True on success, false on error.

Description
This function restores the driver CRTC timings information by reading the current
values from disk into the version the driver has loaded in memory. This is used to
restore the timings to those present the last time the timings were saved to disk.

See Also
GA_saveCRTCTimings, GetCRTCTimings, SaveCRTCTimings, SetGlobalRefresh,
GA_saveModeProfile, GA_saveOptions

SciTech SNAP, Graphics Architecture 95

Graphics Device Driver Reference

GA_saveCRTCTimings

Save the CRTC timings to disk for the specified driver

Declaration
ibool NAPI GA_saveCRTCTimings(
 GA_devCtx *dc)

Prototype In
snap/graphics.h

Parameters
dc Device context to save CRTC timings information for

Return Value
True on success, false on error.

Description
This function saves the driver CRTC timings information to disk. If any of the timings
for the driver have been changed via the SetCRTCTimings or SetGlobalRefresh
functions, this will save those timings to disk to be used as the defaults from then on.

See Also
GA_restoreCRTCTimings, GetCRTCTimings, SaveCRTCTimings, SetGlobalRefresh,
GA_saveModeProfile, GA_saveOptions

SciTech SNAP, Graphics Architecture 96

Graphics Device Driver Reference

GA_saveGlobalOptions

Save the global options to disk

Declaration
ibool NAPI GA_saveGlobalOptions(
 GA_globalOptions *options)

Prototype In
snap/graphics.h

Parameters
options Global options information block to save

Return Value
True on success, false on error (see GA_status for error info)

Description
This function saves the global options information to disk.

See Also
GA_getGlobalOptions, GA_setGlobalOptions

SciTech SNAP, Graphics Architecture 97

Graphics Device Driver Reference

GA_saveModeProfile

Save the mode profile information to disk for the specified driver

Declaration
ibool NAPI GA_saveModeProfile(
 GA_devCtx *dc,
 GA_modeProfile *profile)

Prototype In
snap/graphics.h

Parameters
dc Device context to save mode profile information for
profile Mode profile information block to save

Return Value
True on success, false on error (see GA_status for error info)

Description
This function saves the mode profile information to disk. The mode profile is the list of
modes that the driver will report to user applications. You can modify this list to
customise the set of display modes that the driver supports.

Note: This function does not update the mode profile in the driver itself, but rather you should
call SetModeProfile to update the internal mode profile first before saving the options to
disk.

See Also
GetModeProfile, SetModeProfile, GA_saveOptions, GA_saveCRTCTimings,
GA_loadModeProfile

SciTech SNAP, Graphics Architecture 98

Graphics Device Driver Reference

GA_saveMonitorInfo

Save the monitor profile to disk for the specified driver

Declaration
ibool NAPI GA_saveMonitorInfo(
 GA_devCtx *dc,
 GA_monitor *monitor)

Prototype In
snap/graphics.h

Parameters
dc Device context to save options information for
monitor Monitor profile to save to disk

Return Value
True on success, false on error (see GA_status for error info)

Description
This function saves the monitor profile information to disk.

Note: This function does not update the driver monitor stored in the driver itself, but rather you
should call SetMonitorInfo to update the internal options first before saving the options to
disk.

See Also
GetMonitorInfo, SetMonitorInfo

SciTech SNAP, Graphics Architecture 99

Graphics Device Driver Reference

GA_saveOptions

Save the options to disk for the specified driver

Declaration
ibool NAPI GA_saveOptions(
 GA_devCtx *dc,
 GA_options *options)

Prototype In
snap/graphics.h

Parameters
dc Device context to save options information for
options Driver options information block to save

Return Value
True on success, false on error (see GA_status for error info)

Description
This function saves the driver options information to disk.

Note: This function does not update the driver options in the driver itself, but rather you should
call SetOptions to update the internal options first before saving the options to disk.

See Also
GetOptions, SetOptions, GA_saveModeProfile, GA_saveCRTCTimings

SciTech SNAP, Graphics Architecture 100

Graphics Device Driver Reference

GA_sectRect

Compute the intersection between two rectangles.

Declaration
ibool GA_sectRect(
 GA_rect r1,
 GA_rect r2,
 GA_rect *d)

Prototype In
snap/graphics.h

Parameters
r1 First rectangle to intersect
r2 Second rectangle to intersect
d Place to store the resulting intersection

Return Value
True if the rectangles intersect, false if not.

Description
Computes the intersection of two rectangles, and returns the result in a third. If the
rectangles actually intersect (the intersection is not an empty rectangle) then this
function returns true, otherwise it will return false.

See Also
GA_sectRectFast, GA_sectRectCoord, GA_unionRect

SciTech SNAP, Graphics Architecture 101

Graphics Device Driver Reference

GA_sectRectCoord

Compute the intersection between two rectangles.

Declaration
ibool GA_sectRectCoord(
 int left1,
 int top1,
 int right1,
 int bottom1,
 int left2,
 int top2,
 int right2,
 int bottom2,
 GA_rect *d)

Prototype In
snap/graphics.h

Parameters
left1 Left coordinate of first rectangle to intersect
top1 Top coordinate of first rectangle to intersect
right1 Right coordinate of first rectangle to intersect
bottom1 Bottom coordinate of first rectangle to intersect
left2 Left coordinate of second rectangle to intersect
top2 Top coordinate of second rectangle to intersect
right2 Right coordinate of second rectangle to intersect
bottom2 Bottom coordinate of second rectangle to intersect
d Place to store the resulting intersection

Return Value
True if the rectangles intersect, false if not.

Description
Computes the intersection of two rectangles, and returns the result in a third. If the
rectangles actually intersect (the intersection is not an empty rectangle) then this
function returns true, otherwise it will return false.

See Also
GA_sectRectFastCoord, GA_sectRect, GA_unionRect

SciTech SNAP, Graphics Architecture 102

Graphics Device Driver Reference

GA_sectRectFast

Compute the intersection between two rectangles.

Declaration
void GA_sectRectFast(
 GA_rect r1,
 GA_rect r2,
 GA_rect *d)

Prototype In
snap/graphics.h

Parameters
r1 First rectangle to intersect
r2 Second rectangle to intersect
d Place to store the resulting intersection

Description
This is the same as GA_sectRect but it is implemented as a macro and does not test the
rectangle for intersection.

See Also
GA_sectRect, GA_sectRectCoord, GA_unionRect

SciTech SNAP, Graphics Architecture 103

Graphics Device Driver Reference

GA_sectRectFastCoord

Compute the intersection between two rectangles.

Declaration
ibool GA_sectRectFastCoord(
 int left1,
 int top1,
 int right1,
 int bottom1,
 int left2,
 int top2,
 int right2,
 int bottom2,
 GA_rect *d)

Prototype In
snap/graphics.h

Parameters
left1 Left coordinate of first rectangle to intersect
top1 Top coordinate of first rectangle to intersect
right1 Right coordinate of first rectangle to intersect
bottom1 Bottom coordinate of first rectangle to intersect
left2 Left coordinate of second rectangle to intersect
top2 Top coordinate of second rectangle to intersect
right2 Right coordinate of second rectangle to intersect
bottom2 Bottom coordinate of second rectangle to intersect
d Place to store the resulting intersection

Return Value
True if the rectangles intersect, false if not.

Description
Computes the intersection of two rectangles, and returns the result in a third. If the
rectangles actually intersect (the intersection is not an empty rectangle) then this
function returns true, otherwise it will return false.

See Also
GA_sectRectFastCoord, GA_sectRect, GA_unionRect

SciTech SNAP, Graphics Architecture 104

Graphics Device Driver Reference

GA_setActiveDevice

Sets the active display device for multiple display devices

Declaration
ibool NAPI GA_setActiveDevice(
 N_int32 deviceIndex)

Prototype In
snap/graphics.h

Parameters
deviceIndex Index of device to make active

Return Value
True on success, false on error.

Description
This function allows the application to switch between the primary and secondary
display controllers, making one of the controllers the active controller. When a controller
is the active controller it will function as though it is the only display controller in the
system. You can also select a 'mixed' mode of operation by passing in the
DEVICE_MIXED_MODED parameter, which fully enables the primary display
controller but only enables the secondary display controllers memory mappings. If
mixed mode is selected, it is the responsibility of the calling application to ensure that the
secondary controller's VGA memory spaces are disabled before setting this mode to
avoid conflicts between the controllers.

The device numbering starts at 0 for the primary display controller, and increments by
one for each supports display controller. Ie: the second controller is device 1 while the
third controller is device 2 etc. There is no limit of the number of devices supported,
other than the number of PCI/AGP slots available in a particular machine.

See Also
GA_loadDriver

SciTech SNAP, Graphics Architecture 105

Graphics Device Driver Reference

GA_setCRTCTimings

Set the CRTC timings for a specific display mode and refresh rate

Declaration
ibool NAPI GA_setCRTCTimings(
 GA_devCtx *dc,
 GA_modeInfo *modeInfo,
 GA_CRTCInfo *crtc,
 ibool makeDefault)

Prototype In
snap/graphics.h

Parameters
dc Device context to save CRTC timings information for
modeInfo Display mode information block
crtc CRTC timings to update for the mode
makeDefault True to make the timings the default for the mode

Return Value
True on success, false on error.

Description
This function updates the CRTC timings for a particular display mode and refresh rate
(refresh rate stored in the crtc parameter) in the 7internal CRTC timings database. If the
resolution and/or refresh rate is not supported by the display mode, this function
returns false.

The makeDefault parameter is used to determine whether the CRTC timings should be
made the default timings for the display mode. If this parameter is true, the passed in
timings will become the default timings for that display mode. If not, the timings will be
updated but the default refresh rate will not be changed for the display mode.

See Also
GA_saveCRTCTimings, GA_restoreCRTCTimings, SetCRTCTimings

SciTech SNAP, Graphics Architecture 106

Graphics Device Driver Reference

GA_setDefaultRefresh

Set the default refresh rate for a specific resolution and color depth

Declaration
ibool NAPI GA_setDefaultRefresh(
 GA_devCtx *dc,
 N_int32 xRes,
 N_int32 yRes,
 N_int32 bits,
 N_int32 refreshRate,
 ibool saveToDisk)

Prototype In
snap/graphics.h

Parameters
dc Device context to save CRTC timings information for
xRes X resolution for the mode to change
yRes Y resolution for the mode to change
bits Color depth of the mode to change (0 for text modes)
refreshRate New refresh rate to make the default
saveToDisk True to save the changes permanently to disk

Return Value
True on success, false on error.

Description
This function sets the default refresh rate for a specific resolution and color depth to the
passed in refresh rate for the mode.

Note: Internally the CRTC timings are maintained independantly of specific colors depths, so
changing the default refresh rate for 640x480x8 also changes it for all other 640x480
modes. The main reason we have the 'bits' parameter is so we can tell when we are dealing
with text modes which are handled slightly differently.

See Also
GA_saveCRTCTimings, GA_restoreCRTCTimings

SciTech SNAP, Graphics Architecture 107

Graphics Device Driver Reference

GA_setGlobalOptions

Sets the current global options for the graphics device driver.

Declaration
void NAPI GA_setGlobalOptions(
 GA_globalOptions *options)

Prototype In
snap/graphics.h

Parameters
options Global options to make active.

Description
This function installs a new set of global device options that control the operation of all
the devices at runtime. A default set of options is always built into the device driver, but
the options can be changed at any time. The options may be made permanent with a call
to the GA_saveGlobalOptions function.

Note: The dwSize member of the profile structure is intended for future compatibility, and must
be set to the size of the structure before calling this function. Only the number of bytes set
in the dwSize member will be copied from the callers structure.

See Also
GA_getGlobalOptions, GA_saveGlobalOptions

SciTech SNAP, Graphics Architecture 108

Graphics Device Driver Reference

GA_setMinimumDriverVersion

Sets the minimum driver version supported

Declaration
void NAPI GA_setMinimumDriverVersion(
 N_uint32 version,
 N_int32 allowFallback,
 N_int32 shared)

Prototype In
snap/graphics.h

Parameters
version Minimum driver version to accept
allowFallback Allow the fallback drivers to load
shared True if the device driver should be loaded into shared

memory

Description
This function can be used to exclude early device driver versions if they are known not
to have the necessary feature support from being loaded. This function will stop the
drivers from loading early in the driver load process, so as to avoid any problems that
might crop up during loading and initialisation.

The allowFallback parameter is used to allow the loading of the VBE/Core and VGA
fallback drivers. If this parameter is false, then the VBE/Core and VGA drivers will fail
to load. If this parameter is not false then they will load as normal.

Note: The default minimum version is 0 and the default value for allowFallback is true.

See Also
GA_loadDriver

SciTech SNAP, Graphics Architecture 109

Graphics Device Driver Reference

GA_softStereoExit

Cleans up and exits the software stereo module.

Declaration
void NAPI GA_softStereoExit(void);
STEREO_ENTRY void NAPI GA_softStereoExit(void)

Prototype In
snap/graphics.h

Description
This function cleans up and exits the software stereo page flipping module, and restores
all interrupt handlers hooked by the driver.

See Also
GA_softStereoInit

SciTech SNAP, Graphics Architecture 110

Graphics Device Driver Reference

GA_softStereoGetFlipStatus

Returns the status of the last scheduled stereo display start change.

Declaration
N_int32 NAPI GA_softStereoGetFlipStatus(void);
STEREO_ENTRY N_int32 NAPI GA_softStereoGetFlipStatus(void)

Prototype In
snap/graphics.h

Return Value
-1 if flipper is not running at all; 0 if flip has not occured; 1 if flip has occured and
currently on left eye; 2 if flip has occured and currently on right eye.

Description
This function returns the status of the last scheduled software stereo display start
change. This bit is sticky and is set to 0 when the GA_softStereoScheduleFlip function is
called, and reset to 1 when the flip actually occurs.

This function also serves to inform the calling application whether the flipper is already
running or not. This will help insure that the flipper will only be used one instance at a
time.

See Also
GA_softStereoScheduleFlip, GA_softStereoWaitTillFlipped

SciTech SNAP, Graphics Architecture 111

Graphics Device Driver Reference

GA_softStereoInit

Initialises the software stereo page flipping module.

Declaration
ibool NAPI GA_softStereoInit(GA_devCtx *dc);
STEREO_ENTRY ibool NAPI GA_softStereoInit(
 GA_devCtx *dc)

Prototype In
snap/graphics.h

Parameters
dc SNAP device context to use to access the hardware

Description
This function initialises the software stereo page flip handler, and does one time
initialisation and calibration. The calibration will take about 1 second for most
resolutions and refresh rates.

Note: This function must be called after the system has already been put into graphics mode,
since it does calibration based on the currently active display mode and refresh rate.

Note: Software stereo page flipping is off by default when this function is called, and you must
call GA_softStereoOn to activate it.

See Also
GA_softStereoExit, GA_softStereoOn

SciTech SNAP, Graphics Architecture 112

Graphics Device Driver Reference

GA_softStereoOff

Turns off the automatic software stereo page flipping.

Declaration
void NAPI GA_softStereoOff(void);
STEREO_ENTRY void NAPI GA_softStereoOff(void)

Prototype In
snap/graphics.h

Description
This function turns off the software stereo page flipping, putting the system back into
2D mode and turning off the LC shutter glasses.

See Also
GA_softStereoExit, GA_softStereoOn

SciTech SNAP, Graphics Architecture 113

Graphics Device Driver Reference

GA_softStereoOn

Enables software stereo page flipping.

Declaration
void NAPI GA_softStereoOn(void);
STEREO_ENTRY void NAPI GA_softStereoOn(void)

Prototype In
snap/graphics.h

Description
This function enables the software stereo page flipping, and starts the real time clock
counter running in the background.

See Also
GA_softStereoScheduleFlip, GA_softStereoGetFlipStatus, GA_softStereoOff

SciTech SNAP, Graphics Architecture 114

Graphics Device Driver Reference

GA_softStereoScheduleFlip

Schedule a new stereo display start address change.

Declaration
void NAPI GA_softStereoScheduleFlip(N_uint32 leftAddr,N_uint32
rightAddr);
STEREO_ENTRY void NAPI GA_softStereoScheduleFlip(
 N_uint32 leftAddr,
 N_uint32 rightAddr)

Prototype In
snap/graphics.h

Parameters
leftAddr Left display start address to make active
rightAddr Right display start address to make active

Description
This function schedules a new left and right start address to take hold on the next
vertical retrace for the LC shutter glasses. This is used for double and triple buffering
when stereo mode is active.

See Also
GA_softStereoGetFlipStatus, GA_softStereoWaitTillFlipped

SciTech SNAP, Graphics Architecture 115

Graphics Device Driver Reference

GA_softStereoWaitTillFlipped

Waits until the last scheduled flip operation has occurred.

Declaration
void NAPI GA_softStereoWaitTillFlipped(void);
STEREO_ENTRY void NAPI GA_softStereoWaitTillFlipped(void)

Prototype In
snap/graphics.h

Description
This function polls the status of the last scheduled flip operation, and waits until it has
completed. However this function also does the important job of checking the RTC clock
to ensure that it continues to run, and will re-start it if it has stopped for some reason.
Hence you should call this function when you need to spin until the flip has occurred to
catch problems when the RTC clock stops running.

See Also
GA_softStereoScheduleFlip, GA_softStereoGetFlipStatus

SciTech SNAP, Graphics Architecture 116

Graphics Device Driver Reference

GA_status

Returns the error code for GA_loadDriver if the function failed.

Declaration
int NAPI GA_status(void)

Prototype In
snap/graphics.h

Return Value
Status code for the GA_loadDriver function.

Description
Returns the error code for GA_loadDriver if the function failed.

See Also
GA_errorMsg

SciTech SNAP, Graphics Architecture 117

Graphics Device Driver Reference

GA_unionRect

Computes the union of two rectangles.

Declaration
void GA_unionRect(
 GA_rect r1,
 GA_rect r2,
 GA_rect *d)

Prototype In
snap/graphics.h

Parameters
r1 First rectangle to compute union of
r2 Second rectangle to compute union of
d Place to store resulting union rectangle

Description
This function computes the union of two rectangles, and stores the result in a third
rectangle.

See Also
GA_unionRectCoord, GA_sectRect

SciTech SNAP, Graphics Architecture 118

Graphics Device Driver Reference

GA_unionRectCoord

Computes the union of two rectangles.

Declaration
void GA_unionRectCoord(
 int left1,
 int top1,
 int right1,
 int bottom1,
 int left2,
 int top2,
 int right2,
 int bottom2,
 GA_rect *d)

Prototype In
snap/graphics.h

Parameters
left1 Left coordinate of first rectangle to compute union of
top1 Top coordinate of first rectangle to compute union of
right1 Right coordinate of first rectangle to compute union of
bottom1 Bottom coordinate of first rectangle to compute union of
left2 Left coordinate of second rectangle to compute union of
top2 Top coordinate of second rectangle to compute union of
right2 Right coordinate of second rectangle to compute union of
bottom2 Bottom coordinate of second rectangle to compute union of
d Place to store resulting union rectangle

Description
This function computes the union of two rectangles, and stores the result in a third
rectangle.

See Also
GA_sectRect

SciTech SNAP, Graphics Architecture 119

Graphics Device Driver Reference

GA_unloadDriver

Unloads the loaded graphics device driver.

Declaration
void NAPI GA_unloadDriver(
 GA_devCtx *dc)

Prototype In
snap/graphics.h

Parameters
dc Pointer to device context to unload

Description
This function simply unloads the graphics driver from memory, and frees any of the
internal resources that have been allocated for it. Specifically it will free any locked
memory and any interrupt handlers hooked for the driver.

See Also
GA_loadDriver

SciTech SNAP, Graphics Architecture 120

Graphics Device Driver Reference

GA_unloadRef2d

Unloads the 2D reference rasteriser device driver chain

Declaration
void NAPI GA_unloadRef2d(
 GA_devCtx _FAR_ *dc)

Prototype In
snap/graphics.h

Parameters
dc Pointer to SNAP device context to unload driver chain for

Description
This function unloads the SNAP 2D Reference Rasteriser from memory, without
unloading the actual hardware device driver. This can be used to unload the reference
rasteriser and then reload a new copy such as when changing color depths dynamically
within a display driver.

See Also
GA_unloadDriver

SciTech SNAP, Graphics Architecture 121

Graphics Device Driver Reference

GA_unloadRegionMgr

Unloads the 2D region manager driver.

Declaration
void NAPI GA_unloadRegionMgr(
 PE_MODULE *hModule)

Prototype In
snap/graphics.h

Parameters
hModule Pointer to the module handle for the driver to unload

Description
This function unloads the SNAP 2D region manager from memory. This should only be
called if the application has loaded a separate set of SNAP region manager functions
with GA_loadRegionMgr.

See Also
GA_loadRegionMgr

SciTech SNAP, Graphics Architecture 122

Graphics Device Driver Reference

GA_useDoubleScan

Determine if a mode should use double scanning or not.

Declaration
ibool NAPI GA_useDoubleScan(
 GA_modeInfo *modeInfo)

Prototype In
snap/graphics.h

Parameters
modeInfo Mode information for mode to check

Return Value
True if double scan should be used, false if not.

Description
Determines if we should use a double scan mode for the graphics mode. This is true if
we have a low resolution mode and the mode supports double scanning.

SciTech SNAP, Graphics Architecture 123

Graphics Device Driver Reference

MCS_begin

Checks to see if DDC/CI communication is available and opens it

Declaration
int NAPI MCS_begin(
 GA_devCtx *dc)

Prototype In
snap/ddc.h

Parameters
dc SNAP device driver to use for communications

Return Value
0 if DDC available, 1 if not available, -1 if unable to communicate via DDC

Description
Obsolete. Use MCS_beginExt instead.

See Also
MCS_beginExt

SciTech SNAP, Graphics Architecture 124

Graphics Device Driver Reference

MCS_beginExt

Checks to see if DDC/CI communication is available and opens it

Declaration
int NAPI MCS_beginExt(
 GA_devCtx *dc,
 N_int32 channel)

Prototype In
snap/ddc.h

Parameters
dc SNAP device driver to use for communications
channel I2C channel to use to control the monitor (0 for primary

monitor)

Return Value
One of the DDC_errCode error return values.

Description
This function initializes the DDC communications module. After checking that the I2C
interface is working, this function will attempt to initialize the DDC communication
channel and verify that DDC2B communication is possible. If DDC2B is not available,
this function returns a value of ddcNoCommunication (ie: cannot communicate with
slave). The most likely cause of this failure condition is that there is no DDC capable
monitor attached to the graphics device.

Once DDC2B functionality has been detected, this function attempts to read the
capabilities string from the monitor using the DDC/CI protocol. If a DDC/CI
compatible monitor is successfully found, this function returns ddcOk. If the capabilities
string could not be read, this function returns ddcNotAvailable, which generally
indicates that the attached monitor is not DDC/CI capable. This function also parses the
monitor capabilities string to determine what features the monitor supports and
initializes the device driver accordingly.

Note: After you have finished with communications over the DDC/CI interface, you must call
MCS_end to close the communications channel.

See Also
MCS_end

SciTech SNAP, Graphics Architecture 125

Graphics Device Driver Reference

MCS_enableControl

Enables or disables a specific MCCS control

Declaration
ibool NAPI MCS_enableControl(
 uchar controlCode,
 N_int32 enable)

Prototype In
snap/ddc.h

Parameters
controlCode MCCS control code (MCS_controlsType)
enable 1 to enable, 0 to disable the control

Return Value
True if the function succeeded, false if it failed.

Description
This function enables or disables a specified MCCS control for the attached monitor.
This intention of this function is for controls that have an enabled or disabled state, such
as a microphone input, S-Video camera input or other such controls. Disabling the
control effectively turns off the input, and enabling it turns it on again. Note that most
controls like audio volume controls can be fully controlled via the regular
MCS_setControlValue function.

See Also
MCS_isControlSupported, MCS_getControlValue, MCS_setControlValue, MCS_resetControl,
MCS_saveCurrentSettings

SciTech SNAP, Graphics Architecture 126

Graphics Device Driver Reference

MCS_end

Closes the DDC/CI communications channel

Declaration
void NAPI MCS_end(void)

Prototype In
snap/ddc.h

Description
This function closes the DDC/CI communications channel and must be called after you
have finished DDC/CI communications.

See Also
MCS_begin

SciTech SNAP, Graphics Architecture 127

Graphics Device Driver Reference

MCS_getCapabilitiesString

Reads the DDC/CI capabilities string from the attached monitor.

Declaration
int NAPI MCS_getCapabilitiesString(
 char *data,
 N_int32 maxlen)

Prototype In
snap/ddc.h

Parameters
data Buffer to read capabilities string into
maxlen Maximum length of the buffer to recieve data

Return Value
Length of the capabilities string read from monitor, or -1 on error.

Description
This function reads the DDC/CI capabilities string from the attached monitor and
returns it in the buffer passed in the data parameter. This function will only read up to
maxlen characters from the monitor, and it will return the actual number of characters
read from the monitor. For a description of what the capabilities string contains, please
refer to the VESA DDC/CI specification or the ACCESS.bus specification.

Note: This function removes the binary EDID data that may be present in the capabilities string
before returning it, so that the string may be viewed entirely as an ASCII string. The
EDID data can be easily read with the DDC_readEDID function so it is superfluous to
include the EDID in the capabilities string.

SciTech SNAP, Graphics Architecture 128

Graphics Device Driver Reference

MCS_getControlMax

Returns the maximum value for an MCCS control

Declaration
ibool NAPI MCS_getControlMax(
 uchar controlCode,
 ushort *max)

Prototype In
snap/ddc.h

Parameters
controlCode MCCS control code (MCS_controlsType)
max Place to store the maximum value for the control

Return Value
True if the function succeeded, false if it failed.

Description
This function obtains the maximum value for a specified MCCS control for the attached
monitor. Continuous controls may accept any value between zero and the maximum
value, specific to each control. Non-continuous controls can only accept specific values.
The maximum value returned for non-continuous controls represents the maximum
index for the acceptable values for the control. A value of 0 for non-continous controls
represents that no value has been selected.

Note: This function internally reads the maximum value from the attached monitor only once
for each control between an MCS_begin and MCS_end block. If you call it again after the
maximum value for a control has been read, it simply returns an internal cached value for
maximum performance.

See Also
MCS_isControlSupported, MCS_enableControl, MCS_getControlValue,
MCS_setControlValue, MCS_resetControl, MCS_saveCurrentSettings

SciTech SNAP, Graphics Architecture 129

Graphics Device Driver Reference

MCS_getControlValue

Returns the current value for an MCCS control

Declaration
ibool NAPI MCS_getControlValue(
 uchar controlCode,
 ushort *value)

Prototype In
snap/ddc.h

Parameters
controlCode MCCS control code (MCS_controlsType)
value Place to store the current value for the control

Return Value
True if the function succeeded, false if it failed.

Description
This function obtains the current value for a specified MCCS control for the attached
monitor. Continuous controls may accept any value between zero and the maximum
value, specific to each control. Non-continuous controls can only accept specific values.
A value of 0 for non-continous controls represents that no value has been selected.

Note: If you need to retrieve the values of multiple controls at a time, you should use the more
efficient MCS_getControlValues function which can read multiple control values directly
from the monitor in a single packet.

See Also
MCS_isControlSupported, MCS_enableControl, MCS_getControlValues,
MCS_setControlValue, MCS_setControlValues, MCS_resetControl, MCS_saveCurrentSettings

SciTech SNAP, Graphics Architecture 130

Graphics Device Driver Reference

MCS_getControlValues

Returns the current value for a list of MCCS controls

Declaration
ibool NAPI MCS_getControlValues(
 N_int32 numControls,
 uchar *controlCodes,
 ushort *values)

Prototype In
snap/ddc.h

Parameters
numControls Number of control values to read (40 max)
controlCodes Array of MCCS control codes (MCS_controlsType)
values Array to store the current value for each control

Return Value
True if the function succeeded, false if it failed.

Description
This function gets the current value for multiple MCCS controls at a time. This function
is similar to MCS_getControlValue, but is much faster for reading the value of multiple
controls due to the reduced traffic over the I2C bus.

Note: This function can only read up to 40 controls at a time. If you need to read more than 40
controls, you will need to call this function mutiple times.

See Also
MCS_isControlSupported, MCS_enableControl, MCS_getControlValue,
MCS_setControlValue, MCS_setControlValues, MCS_resetControl, MCS_saveCurrentSettings

SciTech SNAP, Graphics Architecture 131

Graphics Device Driver Reference

MCS_getSelfTestReport

Reads the self test report from the attached monitor

Declaration
ibool NAPI MCS_getSelfTestReport(
 uchar *flags,
 uchar *data,
 uchar *length)

Prototype In
snap/ddc.h

Parameters
flags Place to store the mode flags
data Place to store the data read from the display
length Place to store the length of the data read

Return Value
True if the function succeeded, false if it failed.

Description
This function gets the monitor to perform a self test operation and report the results
back to the host. The information reported back is monitor vendor specific, so this
function is generally used by monitor vendors to read self test information from
monitors in the field for diagnostics and reporting.

SciTech SNAP, Graphics Architecture 132

Graphics Device Driver Reference

MCS_getTimingReport

Reads the current horizontal and vertical frequency from the monitor

Declaration
ibool NAPI MCS_getTimingReport(
 uchar *flags,
 ushort *hFreq,
 ushort *vFreq)

Prototype In
snap/ddc.h

Parameters
flags Place to store the mode flags
hFreq Place to store the horizontal frequency (kHz * 100)
vFreq Place to store the vertical freqency (Hz * 100)

Return Value
True if the function succeeded, false if it failed.

Description
This function reads the horizontal and vertical frequencies for the current display mode
from the monitor. The horizontal frequency is reported in units of kHz * 100 (ie: a value
of 3150 is 31.5 Khz). The vertical frequency is reported in units of Hz * 100 (ie: a a value
of 7500 is 75 Hz).

This function also reads the sync polarities and returns them in the flags parameter. The
values returned in the flags parameter are defined by the MCS_polarityFlagsType
enumeration.

Note: It is highly recommended that all monitor vendors implement this DDC/CI function, since
this function contains useful feedback information to the user and graphics device drivers.

SciTech SNAP, Graphics Architecture 133

Graphics Device Driver Reference

MCS_isControlSupported

Checks to see if an MCCS control is supported

Declaration
ibool NAPI MCS_isControlSupported(
 uchar controlCode)

Prototype In
snap/ddc.h

Parameters
controlCode MCCS control code to check (MCS_controlsType)

Return Value
True if the control is supported, false if not.

Description
This function verifies that the specified MCCS control is supported by the attached
monitor. If the control is suported this function returns true, otherwise it returns false.

See Also
MCS_enableControl, MCS_getControlValue, MCS_setControlValue, MCS_resetControl,
MCS_saveCurrentSettings

SciTech SNAP, Graphics Architecture 134

Graphics Device Driver Reference

MCS_resetControl

Resets the value of an MCCS control to the factory default setting

Declaration
ibool NAPI MCS_resetControl(
 uchar controlCode)

Prototype In
snap/ddc.h

Parameters
controlCode MCCS control code (MCS_controlsType)

Return Value
True if the function succeeded, false if it failed.

Description
This function resets the value for a specified MCCS control to the factory default setting.
This can be used to reset values to reasonable settings if the user has completely
tweaked them out of control.

See Also
MCS_isControlSupported, MCS_enableControl, MCS_getControlValue,
MCS_setControlValue, MCS_saveCurrentSettings

SciTech SNAP, Graphics Architecture 135

Graphics Device Driver Reference

MCS_saveCurrentSettings

Saves the current settings in the monitor NVRAM

Declaration
ibool NAPI MCS_saveCurrentSettings(void)

Prototype In
snap/ddc.h

Return Value
True if the function succeeded, false if it failed.

Description
This function saves the current settings for all controls in the non-volatile RAM
(NVRAM) of the attached monitor. This essentially tells the monitor to remember all the
current settings for the current display mode in the NVRAM in the monitor.

See Also
MCS_isControlSupported, MCS_enableControl, MCS_getControlValue,
MCS_setControlValue, MCS_resetControl

SciTech SNAP, Graphics Architecture 136

Graphics Device Driver Reference

MCS_setControlValue

Sets the value of an MCCS control to the specified value

Declaration
ibool NAPI MCS_setControlValue(
 uchar controlCode,
 ushort value)

Prototype In
snap/ddc.h

Parameters
controlCode MCCS control code (MCS_controlsType)
value New value for the control

Return Value
True if the function succeeded, false if it failed.

Description
This function sets the current value for a specified MCCS control to the specified value.
Continuous controls may accept any value between zero and the maximum value,
specific to each control. Non-continuous controls can only accept specific values. The
maximum value returned for non-continuous controls represents the maximum index
for the acceptable values for the control. A value of 0 for non-continous controls
represents that no value has been selected.

Note: If you need to set the values of multiple controls at a time, you should use the more
efficient MCS_setControlValues function which can set up to 40 control values at the
same time.

See Also
MCS_isControlSupported, MCS_enableControl, MCS_getControlValue, MCS_resetControl,
MCS_saveCurrentSettings

SciTech SNAP, Graphics Architecture 137

Graphics Device Driver Reference

MCS_setControlValues

Sets the value of multiple MCCS controls at a time

Declaration
ibool NAPI MCS_setControlValues(
 N_int32 numControls,
 uchar *controlCodes,
 ushort *values)

Prototype In
snap/ddc.h

Parameters
numControls Number of control values to program (40 max)
controlCodes Array of MCCS control codes (MCS_controlsType)
values Array of new values for the control

Return Value
True if the function succeeded, false if it failed.

Description
This function sets the current value for multiple MCCS controls at a time. This function
is similar to MCS_setControlValue, but is much faster for setting the value of multiple
controls due to reduced traffic over the I2C bus.

Note: This function can only program up to 40 controls at a time. If you need to program more
than 40 controls, you will need to call this function multiple times.

See Also
MCS_isControlSupported, MCS_enableControl, MCS_getControlValue,
MCS_getControlValues, MCS_setControlValue, MCS_resetControl, MCS_saveCurrentSettings

SciTech SNAP, Graphics Architecture 138

Graphics Device Driver Reference

MDBX_close

Close the monitor database.

Declaration
void NAPI MDBX_close(void)

Prototype In
snap/monitor.h

Description
Closes the monitor database when done.

See Also
MDBX_open

SciTech SNAP, Graphics Architecture 139

Graphics Device Driver Reference

MDBX_first

Seeks to the first record in the monitor database

Declaration
int NAPI MDBX_first(
 GA_monitor *rec)

Prototype In
snap/monitor.h

Parameters
rec Monitor record to store entry in

Return Value
Error code for operation.

Description
Attempts to seek to the first entry in the monitor database. If the record exists, the
parameters rec is filled in with the monitor information.

See Also
MDBX_last, MDBX_next, MDBX_prev

SciTech SNAP, Graphics Architecture 140

Graphics Device Driver Reference

MDBX_flush

Flushes the monitor database to disk.

Declaration
int NAPI MDBX_flush(void)

Prototype In
snap/monitor.h

Return Value
Error code for operation.

Description
Flushes the database records to disk after they have been updated.

See Also
MDBX_first, MDBX_insert, MDBX_update

SciTech SNAP, Graphics Architecture 141

Graphics Device Driver Reference

MDBX_getErrCode

Return the current monitor database error code.

Declaration
int NAPI MDBX_getErrCode(void)

Prototype In
snap/monitor.h

Return Value
Monitor database error code.

Description
This function return the current monitor database error code for the previous operation.

See Also
MDBX_getErrorMsg

SciTech SNAP, Graphics Architecture 142

Graphics Device Driver Reference

MDBX_getErrorMsg

Return the current monitor database error code as a string.

Declaration
const char * NAPI MDBX_getErrorMsg(void)

Prototype In
snap/monitor.h

Return Value
Monitor database error code as a string.

Description
This function return the current monitor database error code for the previous operation
as a string.

Note: The string is returned in a temporary buffer that is reused. Hence the calling application
should copy the returned string to a different buffer immediately after calling this function
and before calling any other SNAP functions.

See Also
MDBX_getErrCode

SciTech SNAP, Graphics Architecture 143

Graphics Device Driver Reference

MDBX_importINF

Import a Windows INF file into the monitor database

Declaration
int NAPI MDBX_importINF(
 const char *filename,
 char *mfr)

Prototype In
snap/monitor.h

Parameters
filename Path to the Windows INF file to parse and import
mfr Place to store first manufacturer string read (NULL to ignore)

Return Value
Error code for operation.

Description
This function is used to parse a Windows INF file from disk and insert all monitor
records into the monitor database. This can be used to implement a monitor 'Have Disk'
option for any supported Operating System.

Note: The monitor database is expected to be opened before this function is called, and should be
flushed and closed when done. Hence this function can also import multiple INF files at a
time into the database.

SciTech SNAP, Graphics Architecture 144

Graphics Device Driver Reference

MDBX_insert

Inserts a new record into the monitor database

Declaration
int NAPI MDBX_insert(
 GA_monitor *rec)

Prototype In
snap/monitor.h

Parameters
rec Monitor record to store entry in

Return Value
Error code for operation.

Description
Inserts the specified record into the database. Because the database's are always very
small, we simply do a complete copy of the record array, inserting the new record along
the way. If the record already exists, we update the existing record with the new data.

See Also
MDBX_first, MDBX_update, MDBX_flush

SciTech SNAP, Graphics Architecture 145

Graphics Device Driver Reference

MDBX_last

Seeks to the last record in the monitor database

Declaration
int NAPI MDBX_last(
 GA_monitor *rec)

Prototype In
snap/monitor.h

Parameters
rec Monitor record to store entry in

Return Value
Error code for operation.

Description
Attempts to seek to the last entry in the monitor database. If the record exists, the
parameters rec is filled in with the monitor information.

See Also
MDBX_first, MDBX_next, MDBX_prev

SciTech SNAP, Graphics Architecture 146

Graphics Device Driver Reference

MDBX_next

Seeks to the next record in the monitor database

Declaration
int NAPI MDBX_next(
 GA_monitor *rec)

Prototype In
snap/monitor.h

Parameters
rec Monitor record to store entry in

Return Value
Error code for operation.

Description
Attempts to seek to the next entry in the monitor database after the passed in record. If
the record exists, the parameters rec is filled in with the monitor information.

See Also
MDBX_first, MDBX_last, MDBX_prev

SciTech SNAP, Graphics Architecture 147

Graphics Device Driver Reference

MDBX_open

Open the monitor database.

Declaration
ibool NAPI MDBX_open(
 const char *filename)

Prototype In
snap/monitor.h

Parameters
filename Path to monitor database to open

Return Value
Error code for operation.

Description
Attempts to open the monitor database. This may fail if the file was not found or the file
was not a valid database file.

See Also
MDBX_close

SciTech SNAP, Graphics Architecture 148

Graphics Device Driver Reference

MDBX_prev

Seeks to the previous record in the monitor database

Declaration
int NAPI MDBX_prev(
 GA_monitor *rec)

Prototype In
snap/monitor.h

Parameters
rec Monitor record to store entry in

Return Value
Error code for operation.

Description
Attempts to seek to the previous entry in the monitor database after the passed in
record. If the record exists, the parameters rec is filled in with the monitor information.

See Also
MDBX_first, MDBX_last, MDBX_next

SciTech SNAP, Graphics Architecture 149

Graphics Device Driver Reference

MDBX_update

Updates the current record into the monitor database

Declaration
int NAPI MDBX_update(
 GA_monitor *rec)

Prototype In
snap/monitor.h

Parameters
rec Monitor record to store entry in

Return Value
Error code for operation.

Description
Updates the current record with the new values in the passed in record.

See Also
MDBX_first, MDBX_insert, MDBX_flush

SciTech SNAP, Graphics Architecture 150

Graphics Device Driver Reference

PE_freeLibrary

Frees a loaded Portable Binary DLL

Declaration
void PEAPI PE_freeLibrary(
 PE_MODULE *hModule)

Prototype In
drvlib/peloader.h

Parameters
hModule Handle to a loaded PE DLL library to free

Description
This function frees a loaded PE DLL library from memory.

See Also
PE_getProcAddress, PE_loadLibrary

SciTech SNAP, Graphics Architecture 151

Graphics Device Driver Reference

PE_getError

Returns the error code for the last operation

Declaration
int PEAPI PE_getError(void)

Prototype In
drvlib/peloader.h

Return Value
Error code for the last operation.

See Also
PE_getProcAddress, PE_loadLibrary

SciTech SNAP, Graphics Architecture 152

Graphics Device Driver Reference

PE_getFileSize

Find the actual size of a PE file image

Declaration
ulong PEAPI PE_getFileSize(
 FILE *f,
 ulong startOffset)

Prototype In
drvlib/peloader.h

Parameters
f Handle to open file to read driver from
startOffset Offset to the start of the driver within the file

Return Value
Size of the DLL file on disk, or -1 on error

Description
This function scans the headers for a Portable Binary DLL to determine the length of the
DLL file on disk.

SciTech SNAP, Graphics Architecture 153

Graphics Device Driver Reference

PE_getProcAddress

Gets a function address from a Portable Binary DLL

Declaration

drvlib/peloader.h

Handle to a loaded PE DLL library
Name of the function to get the address of

This function searches for the named, exported function in a loaded PE DLL library, and
returns the address of the function. If the function is not found in the library, this
function return NULL.

PE_loadLibrary

void * PEAPI PE_getProcAddress(
 PE_MODULE *hModule,
 const char *szProcName)

Prototype In

Parameters
hModule
szProcName

Return Value
Pointer to the function, or NULL on failure.

Description

See Also
, PE_freeLibrary

SciTech SNAP, Graphics Architecture 154

Graphics Device Driver Reference

PE_loadLibrary

Loads a Portable Binary DLL into memory

Declaration
PE_MODULE * PEAPI PE_loadLibrary(
 const char *szDLLName,
 ibool shared)

Parameters

Handle to loaded PE DLL, or NULL on failure.

This function loads a Portable Binary DLL library from disk, relocates the code and
returns a handle to the loaded library. This function will only work on DLL's that do not
have any imports, since we don't resolve pimport dependencies in this function.

See Also
PE_getProcAddress, PE_freeLibrary

Prototype In
drvlib/peloader.h

szDLLName Name of the PE DLL library to load
shared True to load module into shared memory

Return Value

Description

SciTech SNAP, Graphics Architecture 155

Graphics Device Driver Reference

PE_loadLibraryExt

Loads a Portable Binary DLL into memory from an open file

Declaration
PE_MODULE * PEAPI PE_loadLibraryExt(
 FILE *f,
 ulong startOffset,
 ulong *size,
 ibool shared)

Prototype In
drvlib/peloader.h

Parameters
f
startOffset
size
shared

Return Value

PE_loadLibrary

PE_loadLibrary, PE_getProcAddress, PE_freeLibrary

Handle to open file to read driver from
Offset to the start of the driver within the file
Place to store the size of the driver loaded
True to load module into shared memory

Handle to loaded PE DLL, or NULL on failure.

Description
This function loads a Portable Binary DLL library from disk, relocates the code and
returns a handle to the loaded library. This function is the same as the regular

 except that it take a handle to an open file and an offset within that file
for the DLL to load.

See Also

SciTech SNAP, Graphics Architecture 156

Graphics Device Driver Reference

PE_loadLibraryMGL

Loads a Portable Binary DLL into memory

Declaration

drvlib/peloader.h

Name of the PE DLL library to load

Return Value

This function is the same as the regular PE_loadLibrary function, except that it looks for
the drivers in the MGL_ROOT/drivers directory or a /drivers directory relative to the
current directory.

PE_loadLibraryMGL brary

PE_MODULE * PEAPI PE_loadLibraryMGL(
 const char *szDLLName,
 ibool shared)

Prototype In

Parameters
szDLLName
shared True to load module into shared memory

Handle to loaded PE DLL, or NULL on failure.

Description

See Also
, PE_getProcAddress, PE_freeLi

SciTech SNAP, Graphics Architecture 157

Graphics Device Driver Reference

REF2D_loadDriver

Loads the 2D reference rasteriser device driver from disk.

Declaration
ibool NAPI REF2D_loadDriver(
 GA_devCtx _FAR_ *hwCtx,
 N_int32 bitsPerPixel,
 N_int32 shared,
 REF2D_driver _FAR_ *_FAR_ *drv,
 PE_MODULE _FAR_ *_FAR_ *hModRef,
 ulong _FAR_ *size)

Parameters

bitsPerPixel

True on success, false on failure.

2d

However if you wish to load and use the SNAP reference rasteriser for drawing to
system memory bitmaps, you can use this function instead.

GA_loadRef2d r

Prototype In
snap/ref2d.h

hwCtx Hardware context to load driver for (if any)
Pixel depth for driver to load (1,4,8,16,24 or 32)

shared True to load into shared memory
drv Pointer to the place to store loaded driver address
hModRef Pointer to the place to store the load driver module

handle
size Pointer to the place to store the size of the driver

Return Value

Description
This function loads a copy of the SNAP 2D Reference Rasteriser for the specific color
depth from disk. This function will always load the SNAP reference rasteriser driver
from the public MGL directories, and should not be used to load the reference rasteriser
driver for use with a hardware device context. Rather you should use the GA_loadRef
function which automatically handles support for loading and initialising the Portait
Display and Multi-Controller SNAP filter drivers.

See Also
, REF2D_unloadDrive

SciTech SNAP, Graphics Architecture 158

Graphics Device Driver Reference

REF2D_queryFunctions

Returns the function pointers for the specified ref2d function group.

Declaration
ibool NAPI REF2D_queryFunctions(
 REF2D_driver *ref2d,
 N_uint32 id,
 void _FAR_ *funcs)

Prototype In

Identifier for the function group to get pointers for

snap/graphics.h

Parameters
ref2d Ref2d driver to return the functions for
id
funcs Pointer to function block to fill in

Return Value

This function is the similar to GA_queryFunctions function except that the functions are
queried via the 2d reference rasteriser library. This is the function that application level
code should use to get access to the SNAP rendering functions that are fleshed out with
software rendered functions as necessary.

REF2D_driver

True if the requested function group is available, false if not.

Description

All application and device driver code must call this function and never call the
->QueryFunctions member directly. This is important because in many

cases special procedures must followed to allow ring 3 application code to directly call
the function pointers returned by this function. See GA_queryFunctions for more
information.

Note: To allow for future compatibility, all function blocks begin with a dwSize member. The
caller is expected to fill in the dwSize member with the size of the function block being
retrieved before calling REF2D_queryFunctions. If the driver exports more functions than
the application knows about, only a subset of the functions are copied to the application. If
the application expects more functions than the driver provides, the non-existant
functions are set to NULL pointers by REF2D_queryFunctions, and the remainder copies
from the driver.

See Also
GA_queryFunctions

SciTech SNAP, Graphics Architecture 159

Graphics Device Driver Reference

REF2D_unloadDriver

Unloads the 2D reference rasteriser from memory

Prototype In

drv
hModule

This function unloads the SNAP 2D Reference Rasteriser from memory. This is used for
when a reference rasteriser is loaded from disk independantly of the hardware drivers,
for use in rendering to system memory buffers completely in software.

REF2D_loadDriver

Declaration
void NAPI REF2D_unloadDriver(
 REF2D_driver _FAR_ *drv,
 PE_MODULE _FAR_ *hModule)

snap/ref2d.h

Parameters
Pointer to driver to unload
Pointer to the module for the driver to unload

Description

See Also

SciTech SNAP, Graphics Architecture 160

Graphics Device Driver Reference

Type Definitions

SciTech SNAP, Graphics Architecture 161

Graphics Device Driver Reference

DDC_ChannelsType

Declaration
typedef enum {
 SCI_channelMonitorPrimary = 0x0000,
 SCI_channelMonitorSecondary = 0x0001,
 SCI_channelTVTuner = 0x0100
 } DDC_ChannelsType

Prototype In

Primary head display monitor channel
Secondary head display monitor channel

snap/ddc.h

Description
Flags passed to the Serial Control Interface functions to determine what I2C
communications channel should be used. Usually the CRT monitor channel is used, but
you can use different channels to control different devices.

Members
SCI_channelMonitorPrimary
SCI_channelMonitorSecondary
SCI_channelTVTuner TV-Tuner channel

SciTech SNAP, Graphics Architecture 162

Graphics Device Driver Reference

DDC_DPMSStatesType

Declaration
typedef enum {
 DPMS_on = 0,
 DPMS_standby = 1,
 DPMS_suspend = 2,
 DPMS_off = 4
 } DDC_DPMSStatesType

Prototype In
snap/ddc.h

Description
DPMS state values to pass to the DPMSsetState device driver call. This enumeration
defines the values to set a specific power down state, and are based on the values
defined in the VESA DPMS 1.0 specification. Please consult this or later versions of this
specification for more information.

Members
DPMS_on Return the controller to the ON state
DPMS_standby Set the controller to the Stand-By power down state
DPMS_suspend Set the controller to the Suspend power down state
DPMS_off Set the controller to the Off power down state

SciTech SNAP, Graphics Architecture 163

Graphics Device Driver Reference

DDC_SCIFlagsType

Declaration
typedef enum {
 SCI_writeSCL = 0x01,
 SCI_writeSDA = 0x02,
 SCI_readSCL = 0x04,
 SCI_readSDA = 0x08,
 SCI_blankFlag = 0x10
 } DDC_SCIFlagsType

Prototype In
snap/ddc.h

Description
Flags for the level of Serial Control Interface supported by the hardware and returned
by the SCIdetect device driver call. Generally, application software will not control the
SCI interface directly, but will use the higher level DDC and MCS functions, which
implement packet based protocols over the SCI interface.

Members
SCI_writeSCL Writing the SCL Clock Line is supported
SCI_writeSDA Writing the SDA Data Line is supported
SCI_readSCL Reading the SCL Clock Line is supported
SCI_readSDA Reading the SDA Data Line is supported
SCI_blankFlag Screen will be blanked during communications

SciTech SNAP, Graphics Architecture 164

Graphics Device Driver Reference

DDC_errCode

Declaration
typedef enum {
 ddcOk = 0,
 ddcNotAvailable = 1,
 ddcNoCommunication = -1
 } DDC_errCode

Prototype In
snap/ddc.h

Description
Returns values from DDC_initExt and MCS_initExt functions.

The ddcOk value indicates that the DDC communications channel was initialised
successfully for both the graphics card and the monitor.

The ddcNotAvailable value indicates that the graphics card does not support DDC
communications or that this feature is disabled for the device driver.

The ddcNoCommunication value indicates that the graphics card does support DDC
communications, however the monitor is not responding on the DDC communications
channel. The most likely cause of this is that the monitor attached to the graphics card is
not DDC2B enabled.

Members
ddcOk DDC communications initialised correctly
ddcNotAvailable DDC is not available
ddcNoCommunication DDC is available but not communicating

SciTech SNAP, Graphics Architecture 165

Graphics Device Driver Reference

EDID_detailedTiming

Declaration
typedef struct {
 ushort pixelClock;
 ushort hActive;
 ushort hBlank;
 ushort hSyncOffset;
 ushort hSyncWidth;
 ushort hBorder;
 ushort vActive;
 ushort vBlank;
 ushort vSyncOffset;
 ushort vSyncWidth;
 ushort vBorder;
 ushort hSize;
 ushort vSize;
 char hSyncPol;
 char vSyncPol;
 ushort hFreq;
 uchar Hz;
 } EDID_detailedTiming

Prototype In
snap/ddc.h

Description
Structure to describe all detailed timings

Members
pixelClock Pixel clock in Hz / 10,000
hActive Horizontal active display value (X resolution)
hBlank Horizontal blank start position
hSyncOffset Horizontal sync offset from blank start
hSyncWidth Horizontal sync width
hBorder Horizontal border width
vActive Vertical active display (Y resolution)
vBlank Vertical blank start position
vSyncOffset Vertical sync offset from blank start
vSyncWidth Vertical sync width
vBorder Vertical border width
hSize Horizontal image size in mm
vSize Vertical image size in mm
hSyncPol Horizontal sync polarity ('+' or '-')
vSyncPol Vertical sync polarity ('+' or '-')
hFreq Horizontal frequency in KHz * 100
Hz Vertical frequency in Hz

SciTech SNAP, Graphics Architecture 166

Graphics Device Driver Reference

EDID_displayTypes

Declaration
typedef enum {
 EDID_GrayScale,
 EDID_RGBColor,
 EDID_NonRGBColor
 } EDID_displayTypes

Prototype In
snap/ddc.h

Description
This enumeration defines the monitor display types stored in the displayType field of
the EDID_record structure.

Members
EDID_GrayScale Monochrome/Grayscale monitor
EDID_RGBColor RGB color monitor
EDID_NonRGBColor NonRGB color monitor

SciTech SNAP, Graphics Architecture 167

Graphics Device Driver Reference

EDID_flags

Declaration
typedef enum {
 EDID_DPMSStandBy = 0x0001,
 EDID_DPMSSuspend = 0x0002,
 EDID_DPMSOff = 0x0004,
 EDID_DPMSEnabled = 0x0007,
 EDID_GTFEnabled = 0x0008,
 EDID_DDC2AB = 0x0010,
 EDID_Blank2Blank = 0x0020,
 EDID_SyncSeparate = 0x0040,
 EDID_SyncComposite = 0x0080,
 EDID_SyncOnGreen = 0x0100,
 EDID_NeedSerration = 0x0200,
 EDID_PreferredTiming = 0x0400
 } EDID_flags

Prototype In
snap/ddc.h

Description
This enumeration defines the values stored in the flags field of the EDID_record
structure.

Members
EDID_DPMSStandBy The DPMS Standby state is supported
EDID_DPMSSuspend The DPMS Suspend state is supported
EDID_DPMSOff The DPMS Off state is supported
EDID_DPMSEnabled Monitor supports DPMS Power Management
EDID_GTFEnabled Monitor supports GTF timings
EDID_DDC2AB Monitor supports DDC2AB interface
EDID_Blank2Blank Monitor requires Blank-to-Blank setup
EDID_SyncSeparate Monitor supports separate syncs
EDID_SyncComposite Monitor supports composite syncs
EDID_SyncOnGreen Monitor supports Sync on Green
EDID_NeedSerration VSync serration is required
EDID_PreferredTiming Detailed timing 1 is preferred timing for monitor

SciTech SNAP, Graphics Architecture 168

Graphics Device Driver Reference

EDID_maxResCodes

Declaration
typedef enum {
 MaxRes_640x480,
 MaxRes_800x600,
 MaxRes_1024x768,
 MaxRes_1152x864,
 MaxRes_1280x1024,
 MaxRes_1600x1200,
 MaxRes_1800x1350,
 MaxRes_1920x1440,
 MaxRes_2048x1536
 } EDID_maxResCodes

Prototype In
snap/ddc.h

Description
This enumeration defines the list of maximum resolutions as reported in the

 structure. Note that these values determine if the monitor can handle the
specific resolution in the 60Hz non-interlaced format. These values may be less than
what you would expect if the monitor can handle 1024x768 interlaced, but not in non-
interlaced mode.

EDID_record

Members
MaxRes_640x480 Maximum resolution is 640x480 @ 60Hz NI
MaxRes_800x600 Maximum resolution is 800x600 @ 60Hz NI
MaxRes_1024x768 Maximum resolution is 1024x768 @ 60Hz NI
MaxRes_1152x864 Maximum resolution is 1152x864 @ 60Hz NI
MaxRes_1280x1024 Maximum resolution is 1280x1024 @ 60Hz NI
MaxRes_1600x1200 Maximum resolution is 1600x1200 @ 60Hz NI
MaxRes_1800x1350 Maximum resolution is 1800x1350 @ 60Hz NI
MaxRes_1920x1440 Maximum resolution is 1920x1440 @ 60Hz NI
MaxRes_2048x1536 Maximum resolution is 2048x1536 @ 60Hz NI

SciTech SNAP, Graphics Architecture 169

Graphics Device Driver Reference

EDID_record

Declaration
typedef struct {
 ushort version;
 char mfrID[4];
 char mfrName[40];
 char modelName[40];
 char serialNo[14];
 char PNPID[8];
 ushort productID;
 ulong serialID;
 uchar mfrWeek;
 ushort mfrYear;
 uchar signalLevel;
 uchar displayType;
 uchar maxResolution;
 uchar minHScan;
 uchar maxHScan;
 uchar minVScan;
 uchar maxVScan;
 ushort maxPClk;
 ushort flags;
 uchar maxHSize;
 uchar maxVSize;
 N_fix32 gamma;
 N_fix32 Rx,Ry;
 N_fix32 Gx,Gy;
 N_fix32 Bx,By;
 N_fix32 Wx,Wy;
 uchar numStandardTimings;
 uchar numDetailedTimings;
 EDID_standardTiming standardTimings[MAX_STANDARD_TIMINGS];
 EDID_detailedTiming detailedTimings[MAX_DETAILED_TIMINGS];
 } EDID_record

Prototype In
snap/ddc.h

Description
Main structure containing the information parsed from the binary EDID data returned
from the monitor.

Members
version EDID version Number (in BCD)
mfrID 3 byte EISA manufacturer ID
mfrName ASCII manufacturer name (Unknown if not found)
modelName ASCII model name for monitor (Unknown if not

found)
serialNo ASCII serial number (Unknown if not found)
PNPID 8 character Plug and Play ID
productID 16-bit product ID code
serialID 32-bit product serial number
mfrWeek Week of manufacture (0-52)
mfrYear Year of manufacture

SciTech SNAP, Graphics Architecture 170

Graphics Device Driver Reference

signalLevel Signal level code (EDID_) signalLevels
displayType Display type code (EDID_displayTypes)
maxResolution Maximum resolution ID (EDID_maxResCodes)
minHScan Minimum horizontal scan (kHz)
maxHScan Maximum horizontal scan (kHz)
minVScan Minimum vertical scan (Hz)
maxVScan Maximum vertical scan (Hz)
maxPClk Maximum pixel clock (MHz)
flags Capabilities flags (EDID_flags)
maxHSize Maximum horizontal size (cm)
maxVSize Maximum vertical size (cm)
gamma Display transfer characteristic (16.16 fixed point)
Rx Red X chromaticity characteristic (16.16 fixed point)
Ry Red Y chromaticity characteristic (16.16 fixed point)
Gx Green X chromaticity characteristic (16.16 fixed

point)
Gy Green Y chromaticity characteristic (16.16 fixed

point)
Bx Blue X chromaticity characteristic (16.16 fixed point)
By Blue Y chromaticity characteristic (16.16 fixed point)
Wx Default white point X characteristic (16.16 fixed

point)
Wy Default white point Y characteristic (16.16 fixed

point)
numStandardTimings Number of standard timings listed
numDetailedTimings Number of detailed timings listed
standardTimings List of standard timings
detailedTimings List of detailed timings

SciTech SNAP, Graphics Architecture 171

Graphics Device Driver Reference

EDID_signalLevels

Declaration
typedef enum {
 EDID_Level_0700_0300_10P,
 EDID_Level_0714_0286_10P,
 EDID_Level_1000_0400_14P,
 EDID_Level_0700_0300_07P,
 EDID_Level_Digital
 } EDID_signalLevels

Prototype In
snap/ddc.h

Description
This enumeration defines the signal level types stored in the signalLevel field of the

 structure. EDID_record

Members
EDID_Level_0700_0300_10P Analog 0.700 - 0.300 (1.0V p-p)
EDID_Level_0714_0286_10P Analog 0.714 - 0.286 (1.0V p-p)
EDID_Level_1000_0400_14P Analog 1.000 - 0.400 (1.4V p-p)
EDID_Level_0700_0300_07P Analog 0.700 - 0.300 (0.7V p-p)
EDID_Level_Digital Digital signal

SciTech SNAP, Graphics Architecture 172

Graphics Device Driver Reference

EDID_standardTiming

Declaration
typedef struct {
 ushort xRes;
 ushort yRes;
 uchar Hz;
 uchar flags;
 } EDID_standardTiming

Prototype In
snap/ddc.h

Description
Structure to describe all established and standard timings

Members
xRes Horizontal resolution in pixels
yRes Vertical resolution in lines
Hz Vertical refresh rate in Hz
flags Flags (EDID_timingTypes)

SciTech SNAP, Graphics Architecture 173

Graphics Device Driver Reference

EDID_timingTypes

Declaration
typedef enum {
 EDID_VGACompatible,
 EDID_XGACompatible,
 EDID_MacCompatible,
 EDID_VESAStandard,
 EDID_MaxTimingType
 } EDID_timingTypes

Prototype In
snap/ddc.h

Description
This enumeration defines the values stored in the flags field of the EDID_standardT
structure.

iming

Members
EDID_VGACompatible VGA compatible timing
EDID_XGACompatible XGA compatible timing
EDID_MacCompatible Macintosh compatible timing
EDID_VESAStandard VESA standard timing

SciTech SNAP, Graphics Architecture 174

Graphics Device Driver Reference

GA_2DRenderFuncs

Prototype In
snap/graphics.h

Description
Function group containing all the device driver functions related to managing drawing
in the framebuffer using the 2D graphics accelerator. This group of functions does not
contain any functions related to state management, just drawing.

Generally applications or shell drivers should request this block of functions from the 2d
reference rasteriser library, not directly from the graphics accelerator. This will allows
the library to fill in all rendering functions with software rendering as necessary
automatically.

Note: Be sure to fill in the dwSize member of this structure when you call GA_queryFunctions
to the correct size of the structure at compile time!

SciTech SNAP, Graphics Architecture 175

Graphics Device Driver Reference

BitBlt

Copy a block of video memory to another location in video memory.

Declaration
void NAPI GA_2DRenderFuncs::BitBlt(
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 width,
 N_int32 height,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 mix)

Prototype In
snap/graphics.h

Parameters
srcLeft Left coordinate of the source rectangle to copy
srcTop Top coordinate of the source rectangle to copy
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
mix Mix code for the copy (GA_mixCodesType)

Description
This function copies a rectangular region of video memory from one location to another.
This routine will copy a rectangular region of video memory from (srcLeft, srcTop,
srcLeft+width-1, srcTop+height-1) to (dstLeft, dstTop) within video memory with the
specified mix, and will also correctly handle cases of overlapping regions in video
memory. The mix code will be used to combine the source bitmap data with the pixels in
the destination bitmap.

See Also
BitBltLin BltSys tBM, Bit , BitBl , SrcTransBlt, DstTransBlt, BitBltFx

SciTech SNAP, Graphics Architecture 176

Graphics Device Driver Reference

BitBltBM

Copy a block of system memory to a location in video memory with Bus Mastering.

Declaration
void NAPI GA_2DRenderFuncs::BitBltBM(
 void *srcAddr,
 N_int32 srcPhysAddr,
 N_int32 srcPitch,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 width,
 N_int32 height,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 mix)

Prototype In
snap/graphics.h

Parameters
srcAddr Address of source bitmap in system memory
srcPhysAddr Physical address of source bitmap in system memory
srcPitch Pitch of source bitmap in bytes
srcLeft Left coordinate within source bitmap to copy
srcTop Top coordinate within source bitmap to copy
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
mix Mix code for the copy (GA_mixCodesType)

Description
This routine will copy a bitmap from system memory with a physical starting address of
srcPhysAddr to the destination rectangle (dstLeft, dstTop, dstLeft+width-1,
dstTop+height-1) with the specified mix. The mix code will be used to combine the
source bitmap data with the pixels in the destination bitmap. The srcPhysAddr value
points to the start of the bitmap data in system memory as a physical memory address,
not a linear memory address that the application software normally deals with. It is up
to the calling application to use the necessary OS services to allocate a block of
contiguous physical memory for the bitmap data, and to obtain the physical memory
address to be passed into this function.

This version is different to the BitBlt function in that the bitmap data is copied using
Bus Mastering by the graphics accelerator, which allows this function to return before
the copy has completed and the accelerator will complete the copy in the background
with a DMA Bus Master operation. If this hardware supports Bus Mastering and this
function is available, it will usually be the fastest method to copy a block of system
memory to video memory.

Sys

SciTech SNAP, Graphics Architecture 177

Graphics Device Driver Reference

Note that the srcLeft and srcTop coordinates define an offset within the source bitmap to
be copied, so it will copy only a portion of the memory bitmap.

See Also
BitBlt sBlt, BitBltLin, BitBltSys, SrcTransBlt, DstTran , BitBltFx

SciTech SNAP, Graphics Architecture 178

Graphics Device Driver Reference

BitBltColorPatt

Copy a block of video memory, with a color pattern applied

Declaration
void NAPI GA_2DRenderFuncs::BitBltColorPatt(
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 width,
 N_int32 height,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 rop3)

Prototype In
snap/graphics.h

Parameters
srcLeft Left coordinate of the source rectangle to copy
srcTop Top coordinate of the source rectangle to copy
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
rop3 Microsoft ROP3 code for the copy (GA_rop3Cod) esType

BitBltColorPattLin attSys tTransBlt

Description
This function is identical to the regular BitBlt function, except that it also applies the
currently active 8x8 color pattern to the destination. The source data, pattern data and
destination data are combined together according to the value passed in the rop3
parameter.

See Also
, BitBltColorP , BitBltColorPattBM, SrcTransBlt, Ds

SciTech SNAP, Graphics Architecture 179

Graphics Device Driver Reference

BitBltColorPattBM

Copy a block of system memory to video memory with Bus Mastering, with a color
pattern applied

Declaration
void NAPI GA_2DRenderFuncs::BitBltColorPattBM(
 void *srcAddr,
 N_int32 srcPhysAddr,
 N_int32 srcPitch,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 width,
 N_int32 height,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 rop3)

Prototype In
snap/graphics.h

Parameters
srcAddr Address of source bitmap in system memory
srcPhysAddr Physical address of source bitmap in system memory
srcPitch Pitch of source bitmap in bytes
srcLeft Left coordinate within source bitmap to copy
srcTop Top coordinate within source bitmap to copy
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
rop3 Microsoft ROP3 code for the copy (GA_rop3Cod) esType

BitBltColorPatt orPattLin tBltColorPattSys

Description
This function is identical to the regular BitBltSys function, except that it also applies the
currently active 8x8 color pattern to the destination. The source data, pattern data and
destination data are combined together according to the value passed in the rop3
parameter.

See Also
, BitBltCol , Bi , SrcTransBlt, DstTransBlt

SciTech SNAP, Graphics Architecture 180

Graphics Device Driver Reference

BitBltColorPattLin

Copy a linear block of video memory, with a color pattern applied

Declaration
void NAPI GA_2DRenderFuncs::BitBltColorPattLin(
 N_int32 srcOfs,
 N_int32 srcPitch,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 width,
 N_int32 height,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 rop3)

Prototype In
snap/graphics.h

Parameters
srcOfs Offset of source bitmap in video memory
srcPitch Pitch of source bitmap in bytes
srcLeft Left coordinate within source bitmap to copy
srcTop Top coordinate within source bitmap to copy
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
rop3 Microsoft ROP3 code for the copy (GA_rop3Cod) esType

BitBltColorPatt orPattSys tBltColorPattBM

Description
This function is identical to the regular BitBltLin function, except that it also applies the
currently active 8x8 color pattern to the destination. The source data, pattern data and
destination data are combined together according to the value passed in the rop3
parameter.

See Also
, BitBltCol , Bi , SrcTransBlt, DstTransBlt

SciTech SNAP, Graphics Architecture 181

Graphics Device Driver Reference

BitBltColorPattSys

Copy a block of system memory to video memory, with a color pattern applied

Declaration
void NAPI GA_2DRenderFuncs::BitBltColorPattSys(
 void *srcAddr,
 N_int32 srcPitch,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 width,
 N_int32 height,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 rop3,
 N_int32 flipY)

Prototype In
snap/graphics.h

Parameters
srcAddr Address of source bitmap in system memory
srcPitch Pitch of source bitmap in bytes
srcLeft Left coordinate within source bitmap to copy
srcTop Top coordinate within source bitmap to copy
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
rop3 Microsoft ROP3 code for the copy (GA_rop3Cod) esType
flipY True if the image should be flipped vertically

Description
This function is identical to the regular BitBltSys function, except that it also applies the
currently active 8x8 color pattern to the destination. The source data, pattern data and
destination data are combined together according to the value passed in the rop3
parameter.

See Also
BitBltColorPatt orPattSys tBltColorPattBM, BitBltCol , Bi , SrcTransBlt, DstTransBlt

SciTech SNAP, Graphics Architecture 182

Graphics Device Driver Reference

BitBltFx

Copy a block of video memory to another location in video memory with optional
effects.

Declaration
void NAPI GA_2DRenderFuncs::BitBltFx(
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 srcWidth,
 N_int32 srcHeight,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 dstWidth,
 N_int32 dstHeight,
 GA_bltFx *fx)

Prototype In
snap/graphics.h

Parameters
srcLeft Left coordinate of the source rectangle to copy
srcTop Top coordinate of the source rectangle to copy
srcWidth Width of the source rectangle in pixels
srcHeight Height of the source rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
dstWidth Width of the destination rectangle in pixels
dstHeight Height of the destination rectangle in scanlines
fx GA_bltFx

x

x

 structure describing the requested effects

Description
This function copies a rectangular region of video memory from one location to another
with the optional effects described in the GA_bltF structure. Currently this function can
perform stretching, source and destination transparency and flipping depending on
what features the underlying hardware supports, with an optional mix code. This
routine will copy the rectangular region of video memory from (srcLeft, srcTop,
srcLeft+srcWidth-1, srcTop+srcHeight-1) to (dstLeft, dstTop, dstLeft+dstWidth-1,
dstTop+dstHeight-1) within video memory. Note that the source and destination
rectangle dimensions may be different in, which is the case for doing a copy with bitmap
stretching. If the GA_bltF structure does not indicate stretching is in effect, the
dstHeight and dstWidth parameters will be ignored and only the srcWidth and
srcHeight parameters will be used. The results of this routine are undefined if the video
memory regions overlap.

Note: Some of the features may not be supported at the same time, and it is up to the application
programmer to call the BitBltFxTest function to determine what features are supported
before calling this function. Calling this function with an unsupported set of features will
result in undefined behaviour.

SciTech SNAP, Graphics Architecture 183

Graphics Device Driver Reference

See Also
BitBltFxTest, BitBltFxLin, BitBltFxSys, BitBltFxBM, SrcTransBlt, DstTransBlt, BitBlt

SciTech SNAP, Graphics Architecture 184

Graphics Device Driver Reference

BitBltFxBM

Copy a linear block of video memory to another location in video memory with optional
effects and bus mastering.

Declaration
void NAPI GA_2DRenderFuncs::BitBltFxBM(
 void *srcAddr,
 N_int32 srcPhysAddr,
 N_int32 srcPitch,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 srcWidth,
 N_int32 srcHeight,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 dstWidth,
 N_int32 dstHeight,
 GA_bltFx *fx)

Prototype In
snap/graphics.h

Parameters
srcAddr Address of source bitmap in system memory
srcPhysAddr Physical address of source bitmap in system memory
srcPitch Pitch of source bitmap in bytes
srcLeft Left coordinate of the source rectangle to copy
srcTop Top coordinate of the source rectangle to copy
srcWidth Width of the source rectangle in pixels
srcHeight Height of the source rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
dstWidth Width of the destination rectangle in pixels
dstHeight Height of the destination rectangle in scanlines
fx GA_bltFx structure describing the requested effects

Description
This function copies a bitmap from system memory with a physical starting address of
srcPhysAddr to video memory with the optional features described in the GA_bltFx
structure. Currently this function can perform stretching, source and destination
transparency and flipping depending on what features the underlying hardware
supports, with an optional mix code. This routine will copy the region (srcLeft, srcTop,
srcLeft+srcWidth-1, srcTop+srcHeight-1) from the source bitmap to (dstLeft, dstTop,
dstLeft+dstWidth-1, dstTop+dstHeight-1) in video memory. The srcPhysAddr value
points to the start of the bitmap data in system memory as a physical memory address,
not a linear memory address that the application software normally deals with. It is up
to the calling application to use the necessary OS services to allocate a block of
contiguous physical memory for the bitmap data, and to obtain the physical memory
address to be passed into this function. Note that the source and destination rectangle

SciTech SNAP, Graphics Architecture 185

Graphics Device Driver Reference

dimensions may be different in, which is the case for doing a copy with bitmap
stretching. If the GA_bltF structure does not indicate stretching is in effect, the
dstHeight and dstWidth parameters will be ignored and only the srcWidth and
srcHeight parameters will be used.

x

FxSysThis version is different to the BitBlt function in that the bitmap data is copied
using Bus Mastering by the graphics accelerator, which allows this function to return
before the copy has completed and the accelerator will complete the copy in the
background with a DMA Bus Master operation. If this hardware supports Bus Mastering
and this function is available, it will usually be the fastest method to copy a block of
system memory to video memory.

Note that the srcLeft and srcTop coordinates define an offset within the source bitmap to
be copied, so it will copy only a portion of the memory bitmap.

Note: Some of the features may not be supported at the same time, and it is up to the application
programmer to call the BitBltFxTest function to determine what features are supported
before calling this function. Calling this function with an unsupported set of features will
result in undefined behaviour.

See Also
BitBltFxTest BltFxLin BltFxBM tBlt, BitBltFx, Bit , Bit , SrcTransBlt, DstTransBlt, Bi

SciTech SNAP, Graphics Architecture 186

Graphics Device Driver Reference

BitBltFxLin

Copy a linear block of video memory to another location in video memory with optional
effects.

Declaration
void NAPI GA_2DRenderFuncs::BitBltFxLin(
 N_int32 srcOfs,
 N_int32 srcPitch,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 srcWidth,
 N_int32 srcHeight,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 dstWidth,
 N_int32 dstHeight,
 GA_bltFx *fx)

Prototype In
snap/graphics.h

Parameters
srcOfs Offset of source bitmap in video memory
srcPitch Pitch of source bitmap in bytes
srcLeft Left coordinate of the source rectangle to copy
srcTop Top coordinate of the source rectangle to copy
srcWidth Width of the source rectangle in pixels
srcHeight Height of the source rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
dstWidth Width of the destination rectangle in pixels
dstHeight Height of the destination rectangle in scanlines
fx GA_bltFx

GA_modeInfo

 structure describing the requested effects

Description
This function copies a linear region of video memory from one location to another with
the optional features described in the GA_bltFx structure. Note that the value of srcOfs
must be aligned to the boundary specified in the BitmapStartAlign member of the

 structure, and the srcPitch value must be padded to multiples of the
BitmapStridePad member of the GA_modeInfo structure. Currently this function can
perform stretching, source and destination transparency and flipping depending on
what features the underlying hardware supports, with an optional mix code. This
routine will copy the region (srcLeft, srcTop, srcLeft+srcWidth-1, srcTop+srcHeight-1)
from the source bitmap to (dstLeft, dstTop, dstLeft+dstWidth-1, dstTop+dstHeight-1) in
video memory. Note that the source and destination rectangle dimensions may be
different in, which is the case for doing a copy with bitmap stretching. If the GA_bltFx
structure does not indicate stretching is in effect, the dstHeight and dstWidth
parameters will be ignored and only the srcWidth and srcHeight parameters will be
used. The results of this routine are undefined if the video memory regions overlap.

SciTech SNAP, Graphics Architecture 187

Graphics Device Driver Reference

Note that the srcLeft and srcTop coordinates define an offset within the source bitmap to
be copied, so it will copy only a portion of an offscreen bitmap. This is useful for storing
multiple images in a single offscreen bitmap, or for handling the case of software
clipping offscreen bitmaps if the destination lies outside of the software clip rectangle
for the destination buffer.

This version is different to the standard BitBltFx function in that the source bitmap to be
copied can be non-conforming, and can have a different logical scanline width to the
destination bitmap. This allows the bitmaps to be stored contiguously in offscreen video
memory, rather than requiring the offscreen video memory to be divided up into
rectangular regions, resulting in more efficient use of available offscreen memory for
bitmap storage.

Note: The value of srcOfs must be aligned to the boundary specified in the BitmapStartAlign
member of the GA_modeInfo structure, and the dstPitch value must be padded to
multiples of the BitmapStridePad member of the GA_ structure. modeInfo

Note: Some of the features may not be supported at the same time, and it is up to the application
programmer to call the BitBltFxTest function to determine what features are supported
before calling this function. Calling this function with an unsupported set of features will
result in undefined behaviour.

See Also
BitBltFxTest BltFxSys BltFxBM tBlt, BitBltFx, Bit , Bit , SrcTransBlt, DstTransBlt, Bi

SciTech SNAP, Graphics Architecture 188

Graphics Device Driver Reference

BitBltFxSys

Copy a linear block of video memory to another location in video memory with optional
effects.

Declaration
void NAPI GA_2DRenderFuncs::BitBltFxSys(
 void *srcAddr,
 N_int32 srcPitch,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 srcWidth,
 N_int32 srcHeight,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 dstWidth,
 N_int32 dstHeight,
 GA_bltFx *fx)

Prototype In
snap/graphics.h

Parameters
srcAddr Address of source bitmap in system memory
srcPitch Pitch of source bitmap in bytes
srcLeft Left coordinate of the source rectangle to copy
srcTop Top coordinate of the source rectangle to copy
srcWidth Width of the source rectangle in pixels
srcHeight Height of the source rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
dstWidth Width of the destination rectangle in pixels
dstHeight Height of the destination rectangle in scanlines
fx GA_bltFx

x

 structure describing the requested effects

Description
This function copies a bitmap from system memory with a starting address of srcAddr
to video memory with the optional features described in the GA_bltFx structure.
Currently this function can perform stretching, source and destination transparency and
flipping depending on what features the underlying hardware supports, with an
optional mix code. This routine will copy the region (srcLeft, srcTop, srcLeft+srcWidth-
1, srcTop+srcHeight-1) from the source bitmap to (dstLeft, dstTop, dstLeft+dstWidth-1,
dstTop+dstHeight-1) in video memory. Note that the source and destination rectangle
dimensions may be different in, which is the case for doing a copy with bitmap
stretching. If the GA_bltF structure does not indicate stretching is in effect, the
dstHeight and dstWidth parameters will be ignored and only the srcWidth and
srcHeight parameters will be used.

Note that the srcLeft and srcTop coordinates define an offset within the source bitmap to
be copied, so it will copy only a portion of an offscreen bitmap. This is useful for storing

SciTech SNAP, Graphics Architecture 189

Graphics Device Driver Reference

multiple images in a single offscreen bitmap, or for handling the case of software
clipping offscreen bitmaps if the destination lies outside of the software clip rectangle
for the destination buffer.

Note: Some of the features may not be supported at the same time, and it is up to the application
programmer to call the BitBltFxTest function to determine what features are supported
before calling this function. Calling this function with an unsupported set of features will
result in undefined behaviour.

See Also
BitBltFxTest BltFxLin BltFxBM tBlt, BitBltFx, Bit , Bit , SrcTransBlt, DstTransBlt, Bi

SciTech SNAP, Graphics Architecture 190

Graphics Device Driver Reference

BitBltFxTest

Tests if a set of BitBltFx features are supported.

Declaration
N_int32 NAPI GA_2DRenderFuncs::BitBltFxTest(
 GA_bltFx *fx)

Prototype In
snap/graphics.h

Parameters
fx GA_bltFx

A_modeInfo

tFx

_bltFx

BitBltFx BltFxLin BltFxSys BltFxBM

 structure to check support for

Return Value
1 if the features are supported, 0 if not.

Description
This function allows an application to fill in an GA_bltFx structure with the desired
capabilies and to query the driver to determine if those capabilities are available. The
driver reports the supported BitBltFx capabilities via the flags and values returned in the
BitBltCaps field of the G structure. However some of the features reported as
being available may be mutually exclusive of each other, for instance the hardware may
support stretching and source transparency, but not at the same time. This function
allows an application program to determine this at runtime, by requesting both
stretching and transparency (for instance afBltStretchNearest | afBltColorKeySrcSingle)
in the GA_bl structure and calling this function to determine if the hardware supports
these features together. If the hardware can perform a BitBltFx function with the
specified GA featues, this function will return a value of 1. If not it will return a
value of 0.

See Also
, Bit , Bit , Bit

SciTech SNAP, Graphics Architecture 191

Graphics Device Driver Reference

BitBltLin

Copy a linear block of video memory to another location in video memory.

Declaration
void NAPI GA_2DRenderFuncs::BitBltLin(
 N_int32 srcOfs,
 N_int32 srcPitch,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 width,
 N_int32 height,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 mix)

Prototype In
snap/graphics.h

Parameters
srcOfs Offset of source bitmap in video memory
srcPitch Pitch of source bitmap in bytes
srcLeft Left coordinate within source bitmap to copy
srcTop Top coordinate within source bitmap to copy
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
mix Mix code for the copy (GA_mixCodesType)

Description
This routine will copy a linear region of video memory from srcOfs from the start of
video memory to the destination rectangle (dstLeft, dstTop, dstLeft+width-1,
dstTop+height-1) with the specified mix. The mix code will be used to combine the
source bitmap data with the pixels in the destination bitmap. The results of this routine
are undefined if the video memory regions overlap.

Note that the srcLeft and srcTop coordinates define an offset within the source bitmap to
be copied, so it is possible to only copy a portion of an offscreen bitmap. This is useful
for storing multiple images in a single offscreen bitmap, or for handling the case of
software clipping offscreen bitmaps if the destination lies outside of the software clip
rectangle for the destination buffer.

This version is different to the standard BitBlt function in that the source bitmap to be
copied can be non-conforming, and can have a different logical scanline width to the
destination bitmap. This allows the bitmaps to be stored contiguously in offscreen video
memory, rather than requiring the offscreen video memory to be divided up into
rectangular regions, resulting in more efficient use of available offscreen memory for
bitmap storage.

SciTech SNAP, Graphics Architecture 192

Graphics Device Driver Reference

Note: The value of srcOfs must be aligned to the boundary specified in the BitmapStartAlign
member of the GA_modeInfo structure, and the srcPitch value must be padded to
multiples of the BitmapStridePad member of the GA_ structure. modeInfo

See Also
BitBlt Blt sBlt, BitBltSys, BitBltBM, SrcTrans , DstTran , BitBltFx

SciTech SNAP, Graphics Architecture 193

Graphics Device Driver Reference

BitBltPatt

Copy a block of video memory, with a mono pattern applied

Declaration
void NAPI GA_2DRenderFuncs::BitBltPatt(
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 width,
 N_int32 height,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 rop3)

Prototype In
snap/graphics.h

Parameters
srcLeft Left coordinate of the source rectangle to copy
srcTop Top coordinate of the source rectangle to copy
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
rop3 Microsoft ROP3 code for the copy (GA_rop3Cod) esType

BitBltPattLin

Description
This function is identical to the regular BitBlt function, except that it also applies the
currently active 8x8 monochrome pattern to the destination. The source data, pattern
data and destination data are combined together according to the value passed in the
rop3 parameter.

See Also
, BitBltPattSys, BitBltPattBM, SrcTransBlt, DstTransBlt

SciTech SNAP, Graphics Architecture 194

Graphics Device Driver Reference

BitBltPattBM

Copy a block of system memory to video memory with Bus Mastering, with a mono
pattern applied

Declaration
void NAPI GA_2DRenderFuncs::BitBltPattBM(
 void *srcAddr,
 N_int32 srcPhysAddr,
 N_int32 srcPitch,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 width,
 N_int32 height,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 rop3)

Prototype In
snap/graphics.h

Parameters
srcAddr Address of source bitmap in system memory
srcPhysAddr Physical address of source bitmap in system memory
srcPitch Pitch of source bitmap in bytes
srcLeft Left coordinate within source bitmap to copy
srcTop Top coordinate within source bitmap to copy
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
rop3 Microsoft ROP3 code for the copy (GA_rop3Cod) esType

BitBltPatt sBlt

Description
This function is identical to the regular BitBltSys function, except that it also applies the
currently active 8x8 monochrome pattern to the destination. The source data, pattern
data and destination data are combined together according to the value passed in the
rop3 parameter.

See Also
, BitBltPattLin, BitBltPattSys, SrcTransBlt, DstTran

SciTech SNAP, Graphics Architecture 195

Graphics Device Driver Reference

BitBltPattLin

Copy a linear block of video memory, with a mono pattern applied

Declaration
void NAPI GA_2DRenderFuncs::BitBltPattLin(
 N_int32 srcOfs,
 N_int32 srcPitch,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 width,
 N_int32 height,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 rop3)

Prototype In
snap/graphics.h

Parameters
srcOfs Offset of source bitmap in video memory
srcPitch Pitch of source bitmap in bytes
srcLeft Left coordinate within source bitmap to copy
srcTop Top coordinate within source bitmap to copy
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
rop3 Microsoft ROP3 code for the copy (GA_rop3Cod) esType

BitBltPatt Blt sBlt

Description
This function is identical to the regular BitBltLin function, except that it also applies the
currently active 8x8 monochrome pattern to the destination. The source data, pattern
data and destination data are combined together according to the value passed in the
rop3 parameter.

See Also
, BitBltPattSys, BitBltPattBM, SrcTrans , DstTran

SciTech SNAP, Graphics Architecture 196

Graphics Device Driver Reference

BitBltPattSys

Copy a block of system memory to video memory, with a mono pattern applied

Declaration
void NAPI GA_2DRenderFuncs::BitBltPattSys(
 void *srcAddr,
 N_int32 srcPitch,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 width,
 N_int32 height,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 rop3,
 N_int32 flipY)

Prototype In
snap/graphics.h

Parameters
srcAddr Address of source bitmap in system memory
srcPitch Pitch of source bitmap in bytes
srcLeft Left coordinate within source bitmap to copy
srcTop Top coordinate within source bitmap to copy
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
rop3 Microsoft ROP3 code for the copy (GA_rop3Cod) esType
flipY True if the image should be flipped vertically

Description
This function is identical to the regular BitBltSys function, except that it also applies the
currently active 8x8 monochrome pattern to the destination. The source data, pattern
data and destination data are combined together according to the value passed in the
rop3 parameter.

See Also
BitBltPatt Blt sBlt, BitBltPattSys, BitBltPattBM, SrcTrans , DstTran

SciTech SNAP, Graphics Architecture 197

Graphics Device Driver Reference

BitBltPlaneMasked

Copy a block of video memory with an associated bit plane mask

Declaration
void NAPI GA_2DRenderFuncs::BitBltPlaneMasked(
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 width,
 N_int32 height,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_uint32 planeMask)

Prototype In
snap/graphics.h

Parameters
srcLeft Left coordinate of the source rectangle to copy
srcTop Top coordinate of the source rectangle to copy
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
planeMask Plane mask to use during the copy

Description
This function copies a rectangular region of video memory from one location to another.
This routine will copy a rectangular region of video memory from (srcLeft, srcTop,
srcLeft+width-1, srcTop+height-1) to (dstLeft, dstTop) within video memory with the
specified plane mask. The plane mask is used to determine which bits in the destination
pixels will be affected by the copy. Each bit in the plane mask is used to mask out a bit in
the destination pixel values, and where a bit is a 1 the destination bit comes from the
source pixel while where a bit is 0 the destination bit is left unchanged.

See Also
BitBlt kedLin kedSys edBM, BitBltPlaneMas , BitBltPlaneMas , BitBltPlaneMask

SciTech SNAP, Graphics Architecture 198

Graphics Device Driver Reference

BitBltPlaneMaskedBM

Copy a block of system memory to a location in video memory with Bus Mastering
using an associated bit plane mask

Declaration
void NAPI GA_2DRenderFuncs::BitBltPlaneMaskedBM(
 void *srcAddr,
 N_int32 srcPhysAddr,
 N_int32 srcPitch,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 width,
 N_int32 height,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_uint32 planeMask)

Prototype In
snap/graphics.h

Parameters
srcAddr Address of source bitmap in system memory
srcPhysAddr Physical address of source bitmap in system memory
srcPitch Pitch of source bitmap in bytes
srcLeft Left coordinate within source bitmap to copy
srcTop Top coordinate within source bitmap to copy
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
planeMask Plane mask to use during the copy

Description
This routine will copy a bitmap from system memory with a physical starting address of
srcPhysAddr to the destination rectangle (dstLeft, dstTop, dstLeft+width-1,
dstTop+height-1) with the specified plane mask. The plane mask is used to determine
which bits in the destination pixels will be affected by the copy. Each bit in the plane
mask is used to mask out a bit in the destination pixel values, and where a bit is a 1 the
destination bit comes from the source pixel while where a bit is 0 the destination bit is
left unchanged.

This version is different to the BitBlt function in that the bitmap data is copied using
Bus Mastering by the graphics accelerator, which allows this function to return before
the copy has completed and the accelerator will complete the copy in the background
with a DMA Bus Master operation. If this hardware supports Bus Mastering and this
function is available, it will usually be the fastest method to copy a block of system
memory to video memory.

Sys

SciTech SNAP, Graphics Architecture 199

Graphics Device Driver Reference

Note that the srcLeft and srcTop coordinates define an offset within the source bitmap to
be copied, so it will copy only a portion of the memory bitmap.

See Also
BitBlt ked MaskedSys, BitBltPlaneMas , BitBltPlaneMaskedLin, BitBltPlane

SciTech SNAP, Graphics Architecture 200

Graphics Device Driver Reference

BitBltPlaneMaskedLin

Copy a linear block of video memory with an associated bit plane mask

Declaration
void NAPI GA_2DRenderFuncs::BitBltPlaneMaskedLin(
 N_int32 srcOfs,
 N_int32 srcPitch,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 width,
 N_int32 height,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_uint32 planeMask)

Prototype In
snap/graphics.h

Parameters
srcOfs Offset of source bitmap in video memory
srcPitch Pitch of source bitmap in bytes
srcLeft Left coordinate within source bitmap to copy
srcTop Top coordinate within source bitmap to copy
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
planeMask Plane mask to use during the copy

Description
This routine will copy a linear region of video memory from srcOfs from the start of
video memory to the destination rectangle (dstLeft, dstTop, dstLeft+width-1,
dstTop+height-1) with the specified plane mask. The plane mask is used to determine
which bits in the destination pixels will be affected by the copy. Each bit in the plane
mask is used to mask out a bit in the destination pixel values, and where a bit is a 1 the
destination bit comes from the source pixel while where a bit is 0 the destination bit is
left unchanged.

Note that the srcLeft and srcTop coordinates define an offset within the source bitmap to
be copied, so it is possible to only copy a portion of an offscreen bitmap. This is useful
for storing multiple images in a single offscreen bitmap, or for handling the case of
software clipping offscreen bitmaps if the destination lies outside of the software clip
rectangle for the destination buffer.

This version is different to the standard BitBlt function in that the source bitmap to be
copied can be non-conforming, and can have a different logical scanline width to the
destination bitmap. This allows the bitmaps to be stored contiguously in offscreen video
memory, rather than requiring the offscreen video memory to be divided up into

SciTech SNAP, Graphics Architecture 201

Graphics Device Driver Reference

rectangular regions, resulting in more efficient use of available offscreen memory for
bitmap storage.

Note: The value of srcOfs must be aligned to the boundary specified in the BitmapStartAlign
member of the GA_modeInfo structure, and the srcPitch value must be padded to
multiples of the BitmapStridePad member of the GA_ structure. modeInfo

See Also
BitBlt ked MaskedBM, BitBltPlaneMas , BitBltPlaneMaskedSys, BitBltPlane

SciTech SNAP, Graphics Architecture 202

Graphics Device Driver Reference

BitBltPlaneMaskedSys

Copy a block of system memory to a location in video memory with an associated bit
plane mask

Declaration
void NAPI GA_2DRenderFuncs::BitBltPlaneMaskedSys(
 void *srcAddr,
 N_int32 srcPitch,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 width,
 N_int32 height,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_uint32 planeMask,
 N_int32 flipY)

Prototype In
snap/graphics.h

Parameters
srcAddr Address of source bitmap in system memory
srcPitch Pitch of source bitmap in bytes
srcLeft Left coordinate within source bitmap to copy
srcTop Top coordinate within source bitmap to copy
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
planeMask Plane mask to use during the copy
flipY True if the image should be flipped vertically

Description
This routine will copy a bitmap from system memory with a starting address of srcAddr
to the destination rectangle (dstLeft, dstTop, dstLeft+width-1, dstTop+height-1) with the
specified plane mask. The plane mask is used to determine which bits in the destination
pixels will be affected by the copy. Each bit in the plane mask is used to mask out a bit in
the destination pixel values, and where a bit is a 1 the destination bit comes from the
source pixel while where a bit is 0 the destination bit is left unchanged.

Note that the srcLeft and srcTop coordinates define an offset within the source bitmap to
be copied, so it will copy only a portion of the memory bitmap.

Note: This routine is provided for completeness, and for the simple case of performing a system
memory to video memory copy with a mix of GA_REPLACE_MIX, it is usually always as
fast or faster to copy the bitmap data directly using a CPU memory copy directly over the
system bus to the linear framebuffer. However if either hardware clipping is in use, or the
mix mode is something other than GA_REPLACE_MIX, this function can be more
efficient than doing a software only bitmap copy.

SciTech SNAP, Graphics Architecture 203

Graphics Device Driver Reference

See Also
BitBlt, BitBltPlaneMasked, BitBltPlaneMaskedLin, BitBltPlaneMaskedBM

SciTech SNAP, Graphics Architecture 204

Graphics Device Driver Reference

BitBltSys

Copy a block of system memory to a location in video memory.

Declaration
void NAPI GA_2DRenderFuncs::BitBltSys(
 void *srcAddr,
 N_int32 srcPitch,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 width,
 N_int32 height,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 mix,
 N_int32 flipY)

Prototype In
snap/graphics.h

Parameters
srcAddr Address of source bitmap in system memory
srcPitch Pitch of source bitmap in bytes
srcLeft Left coordinate within source bitmap to copy
srcTop Top coordinate within source bitmap to copy
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
mix Mix code for the copy (GA_mixCodesType)
flipY True if the image should be flipped vertically

Description
This routine will copy a bitmap from system memory with a starting address of srcAddr
to the destination rectangle (dstLeft, dstTop, dstLeft+width-1, dstTop+height-1) with the
specified mix. The mix code will be used to combine the source bitmap data with the
pixels in the destination bitmap.

Note that the srcLeft and srcTop coordinates define an offset within the source bitmap to
be copied, so it will copy only a portion of the memory bitmap.

Note: This routine is provided for completeness, and for the simple case of performing a system
memory to video memory copy with a mix of GA_REPLACE_MIX, it is usually always as
fast or faster to copy the bitmap data directly using a CPU memory copy directly over the
system bus to the linear framebuffer. However if either hardware clipping is in use, or the
mix mode is something other than GA_REPLACE_MIX, this function can be more
efficient than doing a software only bitmap copy.

See Also
BitBlt Blt sBlt, BitBltSys, BitBltBM, SrcTrans , DstTran , BitBltFx

SciTech SNAP, Graphics Architecture 205

Graphics Device Driver Reference

ClipEllipse

Draw a clipped, single pixel wide, outlined ellipse

Declaration
void NAPI GA_2DRenderFuncs::ClipEllipse(
 N_int32 left,
 N_int32 top,
 N_int32 A,
 N_int32 B,
 N_int32 clipLeft,
 N_int32 clipTop,
 N_int32 clipRight,
 N_int32 clipBottom)

Prototype In
snap/graphics.h

Parameters
left Left coordinate for first pixel in the ellipse
top Top coordinate for first pixel in the ellipse
A Major axis dimension
B Minor axis dimension
clipLeft Left coordinate for clip rectangle (inclusive)
clipTop Top coordinate for clip rectangle (inclusive)
clipRight Right coordinate for clip rectangle (exclusive)
clipBottom Bottom coordinate for clip rectangle (exclusive)

Description
This function draws a single pixel wide, outlined ellipse using the currently active
foreground color and mix. The output is clipped against the passed in clip rectangle.

See Also
DrawEllipse

SciTech SNAP, Graphics Architecture 206

Graphics Device Driver Reference

ClipMonoImageLSBBM

Draws a monochrome bitmap stored in system memory with bus mastering and
clipping

Declaration
void NAPI GA_2DRenderFuncs::ClipMonoImageLSBBM(
 N_int32 x,
 N_int32 y,
 N_int32 width,
 N_int32 height,
 N_int32 byteWidth,
 N_uint8 *image,
 N_int32 imagePhysAddr,
 N_int32 transparent,
 N_int32 clipLeft,
 N_int32 clipTop,
 N_int32 clipRight,
 N_int32 clipBottom)

Prototype In
snap/graphics.h

Parameters
x Destination X coordinate to draw the bitmap at
y Destination Y coordinate to draw the bitmap at
width Width of the bitmap in pixels
height Height of the bitmap in pixels
byteWidth Width of the bitmap in bytes
image Pointer to the bitmap image data to draw
imagePhysAddr Physical address of bitmap image data in system

memory
transparent 1 for transparent, 0 for opaque
clipLeft Left coordinate for clip rectangle
clipTop Top coordinate for clip rectangle
clipRight Right coordinate for clip rectangle (exclusive)
clipBottom Bottom coordinate for clip rectangle (exclusive)

Description
This function is identical to the equivalent PutMonoImage* family function, except that
it takes a clip rectangle and will clip the output of the monochrome image to the
specififed clip rectangle.

See Also
ClipMonoImageLSBSys
ClipMonoImageMSBLin
PutMonoImageLSBLin utMonoImageLSBBM
PutMonoImageMSBLin utMonoImageMSBBM

, ClipMonoImageLSBBM, ClipMonoImageMSBSys,
, ClipMonoImageMSBBM, PutMonoImageLSBSys,

, P , PutMonoImageMSBSys,
, P

SciTech SNAP, Graphics Architecture 207

Graphics Device Driver Reference

ClipMonoImageLSBLin

Draws a monochrome bitmap stored in offscreen video memory, with clipping.

Declaration
void NAPI GA_2DRenderFuncs::ClipMonoImageLSBLin(
 N_int32 x,
 N_int32 y,
 N_int32 width,
 N_int32 height,
 N_int32 byteWidth,
 N_int32 imageOfs,
 N_int32 transparent,
 N_int32 clipLeft,
 N_int32 clipTop,
 N_int32 clipRight,
 N_int32 clipBottom)

Prototype In
snap/graphics.h

Parameters
x Destination X coordinate to draw the bitmap at
y Destination Y coordinate to draw the bitmap at
width Width of the bitmap in pixels
height Height of the bitmap in pixels
byteWidth Width of the bitmap in bytes
imageOfs Offset of bitmap image data in video memory (byte

address)
transparent 1 for transparent, 0 for opaque
clipLeft Left coordinate for clip rectangle
clipTop Top coordinate for clip rectangle
clipRight Right coordinate for clip rectangle (exclusive)
clipBottom Bottom coordinate for clip rectangle (exclusive)

Description
This function is identical to the equivalent PutMonoImage* family function, except that
it takes a clip rectangle and will clip the output of the monochrome image to the
specififed clip rectangle.

See Also
ClipMonoImageLSBSys
ClipMonoImageMSBLin
PutMonoImageLSBLin utMonoImageLSBBM
PutMonoImageMSBLin utMonoImageMSBBM

, ClipMonoImageLSBBM, ClipMonoImageMSBSys,
, ClipMonoImageMSBBM, PutMonoImageLSBSys,

, P , PutMonoImageMSBSys,
, P

SciTech SNAP, Graphics Architecture 208

Graphics Device Driver Reference

ClipMonoImageLSBSys

Draws a monochrome bitmap stored in system memory, with clipping.

Declaration
void NAPI GA_2DRenderFuncs::ClipMonoImageLSBSys(
 N_int32 x,
 N_int32 y,
 N_int32 width,
 N_int32 height,
 N_int32 byteWidth,
 N_uint8 *image,
 N_int32 transparent,
 N_int32 clipLeft,
 N_int32 clipTop,
 N_int32 clipRight,
 N_int32 clipBottom)

Prototype In
snap/graphics.h

Parameters
x Destination X coordinate to draw the bitmap at
y Destination Y coordinate to draw the bitmap at
width Width of the bitmap in pixels
height Height of the bitmap in pixels
byteWidth Width of the bitmap in bytes
image Pointer to the bitmap image data to draw
transparent 1 for transparent, 0 for opaque
clipLeft Left coordinate for clip rectangle
clipTop Top coordinate for clip rectangle
clipRight Right coordinate for clip rectangle (exclusive)
clipBottom Bottom coordinate for clip rectangle (exclusive)

Description
This function is identical to the equivalent PutMonoImage* family function, except that
it takes a clip rectangle and will clip the output of the monochrome image to the
specififed clip rectangle.

See Also
ClipMonoImageLSBLin
ClipMonoImageMSBLin
PutMonoImageLSBLin utMonoImageLSBBM
PutMonoImageMSBLin utMonoImageMSBBM

, ClipMonoImageLSBBM, ClipMonoImageMSBSys,
, ClipMonoImageMSBBM, PutMonoImageLSBSys,

, P , PutMonoImageMSBSys,
, P

SciTech SNAP, Graphics Architecture 209

Graphics Device Driver Reference

ClipMonoImageMSBBM

Draws a monochrome bitmap stored in system memory with bus mastering and
clipping.

Declaration
void NAPI GA_2DRenderFuncs::ClipMonoImageMSBBM(
 N_int32 x,
 N_int32 y,
 N_int32 width,
 N_int32 height,
 N_int32 byteWidth,
 N_uint8 *image,
 N_int32 imagePhysAddr,
 N_int32 transparent,
 N_int32 clipLeft,
 N_int32 clipTop,
 N_int32 clipRight,
 N_int32 clipBottom)

Prototype In
snap/graphics.h

Parameters
x Destination X coordinate to draw the bitmap at
y Destination Y coordinate to draw the bitmap at
width Width of the bitmap in pixels
height Height of the bitmap in pixels
byteWidth Width of the bitmap in bytes
image Pointer to the bitmap image data to draw
imagePhysAddr Physical address of bitmap image data in system

memory
transparent 1 for transparent, 0 for opaque
clipLeft Left coordinate for clip rectangle
clipTop Top coordinate for clip rectangle
clipRight Right coordinate for clip rectangle (exclusive)
clipBottom Bottom coordinate for clip rectangle (exclusive)

Description
This function is identical to the equivalent PutMonoImage* family function, except that
it takes a clip rectangle and will clip the output of the monochrome image to the
specififed clip rectangle.

See Also
ClipMonoImageMSBSys
ClipMonoImageLSBLin
PutMonoImageLSBLin utMonoImageLSBBM
PutMonoImageMSBLin utMonoImageMSBBM

, ClipMonoImageMSBBM, ClipMonoImageMSBSys,
, ClipMonoImageLSBBM, PutMonoImageLSBSys,
, P , PutMonoImageMSBSys,
, P

SciTech SNAP, Graphics Architecture 210

Graphics Device Driver Reference

ClipMonoImageMSBLin

Draws a monochrome bitmap stored in offscreen video memory, with clipping.

Declaration
void NAPI GA_2DRenderFuncs::ClipMonoImageMSBLin(
 N_int32 x,
 N_int32 y,
 N_int32 width,
 N_int32 height,
 N_int32 byteWidth,
 N_int32 imageOfs,
 N_int32 transparent,
 N_int32 clipLeft,
 N_int32 clipTop,
 N_int32 clipRight,
 N_int32 clipBottom)

Prototype In
snap/graphics.h

Parameters
x Destination X coordinate to draw the bitmap at
y Destination Y coordinate to draw the bitmap at
width Width of the bitmap in pixels
height Height of the bitmap in pixels
byteWidth Width of the bitmap in bytes
imageOfs Offset of bitmap image data in video memory (byte

address)
transparent 1 for transparent, 0 for opaque
clipLeft Left coordinate for clip rectangle
clipTop Top coordinate for clip rectangle
clipRight Right coordinate for clip rectangle (exclusive)
clipBottom Bottom coordinate for clip rectangle (exclusive)

Description
This function is identical to the equivalent PutMonoImage* family function, except that
it takes a clip rectangle and will clip the output of the monochrome image to the
specififed clip rectangle.

See Also
ClipMonoImageMSBSys
ClipMonoImageLSBLin
PutMonoImageLSBLin utMonoImageLSBBM
PutMonoImageMSBLin utMonoImageMSBBM

, ClipMonoImageMSBBM, ClipMonoImageMSBSys,
, ClipMonoImageLSBBM, PutMonoImageLSBSys,
, P , PutMonoImageMSBSys,
, P

SciTech SNAP, Graphics Architecture 211

Graphics Device Driver Reference

ClipMonoImageMSBSys

Draws a monochrome bitmap stored in system memory, with clipping.

Declaration
void NAPI GA_2DRenderFuncs::ClipMonoImageMSBSys(
 N_int32 x,
 N_int32 y,
 N_int32 width,
 N_int32 height,
 N_int32 byteWidth,
 N_uint8 *image,
 N_int32 transparent,
 N_int32 clipLeft,
 N_int32 clipTop,
 N_int32 clipRight,
 N_int32 clipBottom)

Prototype In
snap/graphics.h

Parameters
x Destination X coordinate to draw the bitmap at
y Destination Y coordinate to draw the bitmap at
width Width of the bitmap in pixels
height Height of the bitmap in pixels
byteWidth Width of the bitmap in bytes
image Pointer to the bitmap image data to draw
transparent 1 for transparent, 0 for opaque
clipLeft Left coordinate for clip rectangle
clipTop Top coordinate for clip rectangle
clipRight Right coordinate for clip rectangle (exclusive)
clipBottom Bottom coordinate for clip rectangle (exclusive)

Description
This function is identical to the equivalent PutMonoImage* family function, except that
it takes a clip rectangle and will clip the output of the monochrome image to the
specififed clip rectangle.

See Also
ClipMonoImageMSBLin
ClipMonoImageLSBLin BSys
PutMonoImageLSBLin utMonoImageLSBBM
PutMonoImageMSBLin utMonoImageMSBBM

, ClipMonoImageMSBBM, ClipMonoImageMSBSys,
, ClipMonoImageLSBBM, SetMonoClipRect, PutMonoImageLS ,
, P , PutMonoImageMSBSys,
, P

SciTech SNAP, Graphics Architecture 212

Graphics Device Driver Reference

DrawBresenhamLine

Draws a solid, single pixel wide line with bresenham parameters.

Declaration
void NAPI GA_2DRenderFuncs::DrawBresenhamLine(
 N_int32 x1,
 N_int32 y1,
 N_int32 initialError,
 N_int32 majorInc,
 N_int32 diagInc,
 N_int32 count,
 N_int32 flags)

Prototype In
snap/graphics.h

Parameters
x1 X1 coordinate
y1 Y1 coordinate
initialError Initial error term
majorInc Major increment factor for error term
diagInc Diagonal increment factor for error term
count Number of pixels to draw
flags Flags to control drawing (GA_Bresen) hamLineFlagsType

Description
This function is similar to the regular DrawLineInt function, except that the bresenham
parameters for the line are pre-computed and passed to this function. Allowing the
application to pre-compute the bresenham parameters allows for accurate clipping as
the bresenham parameters can be computed for the unclipped line, and initialised to the
start of the clipped line segement. This function is used by OS/2 display drivers and the
SciTech MGL to get accurate line clipping. The values passed to the function for a
regular integer line can be computed as follows:

flags = gaLineXPositive | gaLineYPositive | gaLineXMajor
 | gaLineDoLastPel;
if ((absDeltaX = x2 - x1) < 0) {
 absDeltaX = -absDeltaX;
 flags &= ~gaLineXPositive;
 }
if ((absDeltaY = y2 - y1) < 0) {
 absDeltaY = -absDeltaY;
 flags &= ~gaLineYPositive;
 }
if (absDeltaY > absDeltaX) {
 SWAP(absDeltaX,absDeltaY);
 flags &= ~gaLineXMajor;
 }
majorInc = 2 * absDeltaY; // 2 * dy
initialError = majorInc - absDeltaX; // 2 * dy - dx
diagInc = initialError - absDeltaX; // 2 * (dy - dx)

See Also

SciTech SNAP, Graphics Architecture 213

Graphics Device Driver Reference

DrawLineInt, DrawStippl eLineInt

SciTech SNAP, Graphics Architecture 214

Graphics Device Driver Reference

DrawBresenhamStippleLine

Draws a stippled, single pixel wide line with bresenham parameters.

Declaration
void NAPI GA_2DRenderFuncs::DrawBresenhamStippleLine(
 N_int32 x1,
 N_int32 y1,
 N_int32 initialError,
 N_int32 majorInc,
 N_int32 diagInc,
 N_int32 count,
 N_int32 flags,
 N_int32 transparent)

Prototype In
snap/graphics.h

Parameters
x1 X1 coordinate
y1 Y1 coordinate
initialError Initial error term
majorInc Major increment factor for error term
diagInc Diagonal increment factor for error term
count Number of pixels to draw
flags Flags to control drawing (GA_Bresen) hamLineFlagsType

awStippleLineInt

transparent True for a transparent background

Description
This function is similar to the regular Dr function, except that the
bresenham parameters for the line are pre-computed and passed to this function.
Allowing the application to pre-compute the bresenham parameters allows for accurate
clipping as the bresenham parameters can be computed for the unclipped line, and
initialised to the start of the clipped line segement. This function is used by OS/2
display drivers to get accurate line clipping. The values passed to the function for a
regular integer line can be computed as follows:

flags = gaLineXPositive | gaLineYPositive | gaLineXMajor
 | gaLineDoLastPel;
if ((absDeltaX = x2 - x1) < 0) {
 absDeltaX = -absDeltaX;
 flags &= ~gaLineXPositive;
 }
if ((absDeltaY = y2 - y1) < 0) {
 absDeltaY = -absDeltaY;
 flags &= ~gaLineYPositive;
 }
if (absDeltaY > absDeltaX) {
 SWAP(absDeltaX,absDeltaY);
 flags &= ~gaLineXMajor;
 }
majorInc = 2 * absDeltaY; // 2 * dy
initialError = majorInc - absDeltaX; // 2 * dy - dx
diagInc = initialError - absDeltaX; // 2 * (dy - dx)

SciTech SNAP, Graphics Architecture 215

Graphics Device Driver Reference

See Also
DrawStippleLineInt, DrawLineInt, SetLineStipple, SetLineStippleCount

SciTech SNAP, Graphics Architecture 216

Graphics Device Driver Reference

DrawBresenhamStyleLine

Draws an OS/2 style styled, single pixel wide line with bresenham parameters.

Declaration
void NAPI GA_2DRenderFuncs::DrawBresenhamStyleLine(
 N_int32 x1,
 N_int32 y1,
 N_int32 initialError,
 N_int32 majorInc,
 N_int32 diagInc,
 N_int32 count,
 N_int32 flags,
 N_int32 transparent)

Prototype In
snap/graphics.h

Parameters
x1 X1 coordinate
y1 Y1 coordinate
initialError Initial error term
majorInc Major increment factor for error term
diagInc Diagonal increment factor for error term
count Number of pixels to draw
flags Flags to control drawing (GA_Bresen) hamLineFlagsType

awStippleLineInt

transparent True for a transparent background

Description
This function is similar to the regular Dr function, except that the
bresenham parameters for the line are pre-computed and passed to this function.
Allowing the application to pre-compute the bresenham parameters allows for accurate
clipping as the bresenham parameters can be computed for the unclipped line, and
initialised to the start of the clipped line segement. This function is used by OS/2
display drivers to get accurate line clipping. The values passed to the function for a
regular integer line can be computed as follows:

flags = gaLineXPositive | gaLineYPositive | gaLineXMajor
 | gaLineDoLastPel;
if ((absDeltaX = x2 - x1) < 0) {
 absDeltaX = -absDeltaX;
 flags &= ~gaLineXPositive;
 }
if ((absDeltaY = y2 - y1) < 0) {
 absDeltaY = -absDeltaY;
 flags &= ~gaLineYPositive;
 }
if (absDeltaY > absDeltaX) {
 SWAP(absDeltaX,absDeltaY);
 flags &= ~gaLineXMajor;
 }
majorInc = 2 * absDeltaY; // 2 * dy
initialError = majorInc - absDeltaX; // 2 * dy - dx
diagInc = initialError - absDeltaX; // 2 * (dy - dx)

SciTech SNAP, Graphics Architecture 217

Graphics Device Driver Reference

See Also
DrawStyleLineInt wLineInt, Dra , SetLineStyle

SciTech SNAP, Graphics Architecture 218

Graphics Device Driver Reference

DrawClippedBresenhamLine

Draws a solid, single pixel wide line with bresenham parameters.

Declaration
N_int32 NAPI GA_2DRenderFuncs::DrawClippedBresenhamLine(
 N_int32 x1,
 N_int32 y1,
 N_int32 initialError,
 N_int32 majorInc,
 N_int32 diagInc,
 N_int32 count,
 N_int32 flags,
 N_int32 clipLeft,
 N_int32 clipTop,
 N_int32 clipRight,
 N_int32 clipBottom)

Prototype In
snap/graphics.h

Parameters
x1 X1 coordinate
y1 Y1 coordinate
initialError Initial error term
majorInc Major increment factor for error term
diagInc Diagonal increment factor for error term

Number of pixels to draw count
flags Flags to control drawing (GA_BresenhamLineFlagsType)

Description

clipLeft Left coordinate for clip rectangle (inclusive)
clipTop Top coordinate for clip rectangle (inclusive)
clipRight Right coordinate for clip rectangle (exclusive)
clipBottom Bottom coordinate for clip rectangle (exclusive)

This function is similar to the regular DrawLineInt function, except that the bresenham
parameters for the line are pre-computed and passed to this function. Allowing the
application to pre-compute the bresenham parameters allows for accurate clipping as
the bresenham parameters can be computed for the unclipped line, and initialised to the
start of the clipped line segement. This function is used by OS/2 display drivers and the
SciTech MGL to get accurate line clipping. The values passed to the function for a
regular integer line can be computed as follows:

flags = gaLineXPositive | gaLineYPositive | gaLineXMajor
 | gaLineDoLastPel;
if ((absDeltaX = x2 - x1) < 0) {
 absDeltaX = -absDeltaX;
 flags &= ~gaLineXPositive;
 }
if ((absDeltaY = y2 - y1) < 0) {
 absDeltaY = -absDeltaY;
 flags &= ~gaLineYPositive;
 }

SciTech SNAP, Graphics Architecture 219

Graphics Device Driver Reference

if (absDeltaY > absDeltaX) {
 SWAP(absDeltaX,absDeltaY);
 flags &= ~gaLineXMajor;
 }
majorInc = 2 * absDeltaY; // 2 * dy
initialError = majorInc - absDeltaX; // 2 * dy - dx
diagInc = initialError - absDeltaX; // 2 * (dy - dx)

The output is clipped against the passed in clipping rectangle.

DrawClippedLineInt pleLineInt
See Also

, DrawClippedStip

SciTech SNAP, Graphics Architecture 220

Graphics Device Driver Reference

DrawClippedBresenhamStippleLine

Draws a stippled, single pixel wide line with bresenham parameters.

Declaration
N_int32 NAPI GA_2DRenderFuncs::DrawClippedBresenhamStippleLine(
 N_int32 x1,
 N_int32 y1,
 N_int32 initialError,
 N_int32 majorInc,
 N_int32 diagInc,
 N_int32 count,
 N_int32 flags,
 N_int32 transparent,
 N_int32 clipLeft,
 N_int32 clipTop,
 N_int32 clipRight,
 N_int32 clipBottom)

Parameters

Prototype In
snap/graphics.h

x1 X1 coordinate
y1 Y1 coordinate
initialError Initial error term
majorInc Major increment factor for error term
diagInc Diagonal increment factor for error term
count Number of pixels to draw
flags Flags to control drawing (GA_Bresen) hamLineFlagsType

awStippleLineInt

transparent True for a transparent background
clipLeft Left coordinate for clip rectangle (inclusive)
clipTop Top coordinate for clip rectangle (inclusive)
clipRight Right coordinate for clip rectangle (exclusive)
clipBottom Bottom coordinate for clip rectangle (exclusive)

Description
This function is similar to the regular Dr function, except that the
bresenham parameters for the line are pre-computed and passed to this function.
Allowing the application to pre-compute the bresenham parameters allows for accurate
clipping as the bresenham parameters can be computed for the unclipped line, and
initialised to the start of the clipped line segement. This function is used by OS/2
display drivers to get accurate line clipping. The values passed to the function for a
regular integer line can be computed as follows:

flags = gaLineXPositive | gaLineYPositive | gaLineXMajor
 | gaLineDoLastPel;
if ((absDeltaX = x2 - x1) < 0) {
 absDeltaX = -absDeltaX;
 flags &= ~gaLineXPositive;
 }
if ((absDeltaY = y2 - y1) < 0) {

SciTech SNAP, Graphics Architecture 221

Graphics Device Driver Reference

 absDeltaY = -absDeltaY;
 flags &= ~gaLineYPositive;
 }
if (absDeltaY > absDeltaX) {
 SWAP(absDeltaX,absDeltaY);
 flags &= ~gaLineXMajor;
 }
majorInc = 2 * absDeltaY; // 2 * dy
initialError = majorInc - absDeltaX; // 2 * dy - dx
diagInc = initialError - absDeltaX; // 2 * (dy - dx)

The output is clipped against the passed in clipping rectangle.

See Also
DrawClippedStippleLineInt, DrawClippedLineInt, SetLineStipple, SetLineStippleCount

SciTech SNAP, Graphics Architecture 222

Graphics Device Driver Reference

DrawClippedBresenhamStyleLine

Draws an OS/2 style styled, single pixel wide line with bresenham parameters.

Declaration
N_int32 NAPI GA_2DRenderFuncs::DrawClippedBresenhamStyleLine(
 N_int32 x1,
 N_int32 y1,
 N_int32 initialError,
 N_int32 majorInc,
 N_int32 diagInc,
 N_int32 count,
 N_int32 flags,
 N_int32 transparent,
 N_int32 clipLeft,
 N_int32 clipTop,
 N_int32 clipRight,
 N_int32 clipBottom)

Prototype In
snap/graphics.h

Parameters
x1 X1 coordinate
y1 Y1 coordinate
initialError Initial error term
majorInc Major increment factor for error term
diagInc Diagonal increment factor for error term
count Number of pixels to draw
flags Flags to control drawing (GA_Bresen) hamLineFlagsType

awStippleLineInt

transparent True for a transparent background
clipLeft Left coordinate for clip rectangle (inclusive)
clipTop Top coordinate for clip rectangle (inclusive)
clipRight Right coordinate for clip rectangle (exclusive)
clipBottom Bottom coordinate for clip rectangle (exclusive)

Description
This function is similar to the regular Dr function, except that the
bresenham parameters for the line are pre-computed and passed to this function.
Allowing the application to pre-compute the bresenham parameters allows for accurate
clipping as the bresenham parameters can be computed for the unclipped line, and
initialised to the start of the clipped line segement. This function is used by OS/2
display drivers to get accurate line clipping. The values passed to the function for a
regular integer line can be computed as follows:

flags = gaLineXPositive | gaLineYPositive | gaLineXMajor
 | gaLineDoLastPel;
if ((absDeltaX = x2 - x1) < 0) {
 absDeltaX = -absDeltaX;
 flags &= ~gaLineXPositive;
 }
if ((absDeltaY = y2 - y1) < 0) {

SciTech SNAP, Graphics Architecture 223

Graphics Device Driver Reference

 absDeltaY = -absDeltaY;
 flags &= ~gaLineYPositive;
 }
if (absDeltaY > absDeltaX) {
 SWAP(absDeltaX,absDeltaY);
 flags &= ~gaLineXMajor;
 }
majorInc = 2 * absDeltaY; // 2 * dy
initialError = majorInc - absDeltaX; // 2 * dy - dx
diagInc = initialError - absDeltaX; // 2 * (dy - dx)

The output is clipped against the passed in clipping rectangle.

See Also
DrawClippedStyleLineInt, DrawClippedLineInt, SetLineStyle

SciTech SNAP, Graphics Architecture 224

Graphics Device Driver Reference

DrawClippedLineInt

Draws a solid, single pixel wide line with integer coordinates.

Declaration
N_int32 NAPI GA_2DRenderFuncs::DrawClippedLineInt(
 N_int32 x1,
 N_int32 y1,
 N_int32 x2,
 N_int32 y2,
 N_int32 drawLast,
 N_int32 clipLeft,
 N_int32 clipTop,
 N_int32 clipRight,
 N_int32 clipBottom)

Prototype In
snap/graphics.h

Parameters
x1 X1 coordinate
y1
x2

DrawClippedBresenhamLine pleLineInt

Y1 coordinate
X2 coordinate

y2 Y2 coordinate
drawLast 1 to draw last pixel, 0 to skip it
clipLeft Left coordinate for clip rectangle (inclusive)
clipTop Top coordinate for clip rectangle (inclusive)
clipRight Right coordinate for clip rectangle (exclusive)
clipBottom Bottom coordinate for clip rectangle (exclusive)

Description
This function renders a solid line at the specified location and the currently active color
and mix, clipping to the pass in clip rectangle. This function is really intended as a fast
way to handle clipped lines if the hardware can do hardware clipping, and to allow
filters drivers to handle clipping efficiently (ie: multi controller, portrait etc).

The output is clipped against the passed in clipping rectangle.

See Also
, DrawClippedStippleLine, DrawClippedStip ,

DrawDrawClippedStyleLineInt

SciTech SNAP, Graphics Architecture 225

Graphics Device Driver Reference

DrawClippedStippleLineInt

Draws a stippled, single pixel wide line with integer coordinates.

Declaration
N_int32 NAPI GA_2DRenderFuncs::DrawClippedStippleLineInt(
 N_int32 x1,
 N_int32 y1,
 N_int32 x2,
 N_int32 y2,
 N_int32 drawLast,
 N_int32 transparent,
 N_int32 clipLeft,
 N_int32 clipTop,
 N_int32 clipRight,
 N_int32 clipBottom)

Prototype In
snap/graphics.h

Parameters
x1 X1 coordinate
y1 Y1 coordinate
x2 X2 coordinate
y2 Y2 coordinate
drawLast 1 to draw last pixel, 0 to skip it
transparent 1 if the line is transparent, 0 if opaque
clipLeft Left coordinate for clip rectangle (inclusive)
clipTop Top coordinate for clip rectangle (inclusive)
clipRight Right coordinate for clip rectangle (exclusive)
clipBottom Bottom coordinate for clip rectangle (exclusive)

Description
This function renders a stippled line at the specified location and the currently active
colors, mix and stipple pattern. This routine will render a line from (x1,y1) to (x2,y2)
inclusive. If the drawLast parameter is set, the last pixel in the line (x2,y2) will be drawn,
otherwise it will be skipped. This feature allows multiple lines to be linked together as a
polyline for CAD style operations while drawing in XOR mode (and is also required for
compatibility with Microsoft Windows).

If the transparent parameter is set to 1, where a bit is 0 in the stipple pattern the
destination pixel remains untouched. If the transparent parameter is set to 0, where a bit
is 0 in the stipple pattern the destination pixel is drawn in the background color. In all
cases where a bit in the stipple pattern is 1, the pixel is drawn in the foreground color.

The output is clipped against the passed in clipping rectangle.

See Also
DrawClippedBresenhamStippleLine, DrawClippedLineInt, SetLineStipple, SetLineStippleCount

SciTech SNAP, Graphics Architecture 226

Graphics Device Driver Reference

DrawClippedStyleLineInt

Draws an OS/2 style styled, single pixel wide line with integer coordinates.

transparent

DrawClippedBresenhamStyleLine

Declaration
N_int32 NAPI GA_2DRenderFuncs::DrawClippedStyleLineInt(
 N_int32 x1,
 N_int32 y1,
 N_int32 x2,
 N_int32 y2,
 N_int32 drawLast,
 N_int32 transparent,
 N_int32 clipLeft,
 N_int32 clipTop,
 N_int32 clipRight,
 N_int32 clipBottom)

Prototype In
snap/graphics.h

Parameters
x1 X1 coordinate
y1 Y1 coordinate
x2 X2 coordinate
y2 Y2 coordinate
drawLast 1 to draw last pixel, 0 to skip it

1 if the line is transparent, 0 if opaque
clipLeft Left coordinate for clip rectangle (inclusive)
clipTop Top coordinate for clip rectangle (inclusive)
clipRight Right coordinate for clip rectangle (exclusive)
clipBottom Bottom coordinate for clip rectangle (exclusive)

Description
This function renders an OS/2 style styled line at the specified location and the currently
active colors, mix and style pattern. This routine will render a line from (x1,y1) to (x2,y2)
inclusive. If the drawLast parameter is set, the last pixel in the line (x2,y2) will be drawn,
otherwise it will be skipped. This feature allows multiple lines to be linked together as a
polyline for CAD style operations while drawing in XOR mode (and is also required for
compatibility with Microsoft Windows).

If the transparent parameter is set to 1, where a bit is 0 in the style pattern the
destination pixel remains untouched. If the transparent parameter is set to 0, where a bit
is 0 in the style pattern the destination pixel is drawn in the background color. In all
cases where a bit in the style pattern is 1, the pixel is drawn in the foreground color.

The output is clipped against the passed in clipping rectangle.

See Also
, DrawClippedLineInt, SetLineStyle

SciTech SNAP, Graphics Architecture 227

Graphics Device Driver Reference

DrawColorPattEllipseList

Draws a list of color patterned scanlines for a filled ellipse engine back end.

Declaration

DrawEllipseList, DrawPattEllipseList, DrawFatEllipseList, DrawPattFatEllipseList,
DrawColorPattFatEllipseList

void NAPI GA_2DRenderFuncs::DrawColorPattEllipseList(
 N_int32 y,
 N_int32 length,
 N_int32 height,
 N_int16 *scans)

Prototype In
snap/graphics.h

Parameters
y Y coordinate for scanline
length Number of scanlines in the list
height Height of the ellipse minor axis
scans Pointer to an array of scanline data

Description
This function renders a list of color patterned scanlines starting at the specified location
in the currently active mix and color pattern. This function forms the back end of a fast
filled ellipse rendering engine, but does not actually compute the scanlines in the list
itself since the the pixelisation rules are usually different for different device driver
environments.

The scanline coordinates are passed as an array of 16-bit integer coordinates, packed
with the LEFT coordinate followed by the RIGHT coordinate and so on for each
scanline. For each scanline in the list, this routine will render a scanline from LEFT to
RIGHT (exclusive) at increasing Y coordinates. The calling code must always guarantee
that the LEFT coordinates will be less than the RIGHT coordinates, and that they will
never be equal for each scanline.

The algorithm used internally in the drivers to render the list of scanlines is similar to
the following:

maxIndex = length-1;
for (i = 0,j = height; i < maxIndex; i++,j--,scans += 2) {
 ColorPattScan(i,scans[0],scans[1]);
 ColorPattScan(j,scans[0],scans[1]);
 }
if (!(height & 1))
 ColorPattScan(i,scans[0],scans[0]);

See Also

SciTech SNAP, Graphics Architecture 228

Graphics Device Driver Reference

DrawColorPattFatEllipseList

Draws a list of color patterned scanlines for a fat ellipse engine back end.

Declaration
void NAPI GA_2DRenderFuncs::DrawColorPattFatEllipseList(
 N_int32 y,
 N_int32 length,
 N_int32 height,
 N_int16 *scans)

Prototype In
snap/graphics.h

Parameters
y Y coordinate for scanline
length Number of scanlines in the list
height Height of the ellipse minor axis + pen height adjustment
scans Pointer to an array of scanline data

Description
This function renders a list of color patterned scanlines starting at the specified location
in the currently active mix and color pattern. This function forms the back end of a fast
fat pen ellipse rendering engine, but does not actually compute the scanlines in the list
itself since the the pixelisation rules are usually different for different device driver
environments.

The scanline coordinates are passed as an array of 16-bit integer coordinates, packed in
mutiples of 4 coordinates for a single scanline list. The first coordinate is the LEFTL
coordinate, the second is the LEFTR, the third is the RIGHTL and the fourth is the
RIGHTR coordinate. For each scanline in the list (each list defines two scanlines at the
same Y coordinate), this routine will render a scanline from LEFT to RIGHT (exclusive)
at increasing Y coordinates. The calling code must always guarantee that the LEFT
coordinates will be less than the RIGHT coordinates, and that they will never be equal
for each scanline.

The algorithm used internally in the drivers to render the list of scanlines is similar to
the following:

for (i = 0,j = height; i < length; i++,j--,scans += 4) {
 if (scans[LEFTR] < scans[RIGHTL]) {
 ColorPattScan(i,scans[LEFTL],scans[LEFTR]);
 ColorPattScan(i,scans[RIGHTL],scans[RIGHTR]);
 ColorPattScan(j,scans[LEFTL],scans[LEFTR]);
 ColorPattScan(j,scans[RIGHTL],scans[RIGHTR]);
 }
 else {
 ColorPattScan(i,scans[LEFTL],scans[RIGHTR]);
 ColorPattScan(j,scans[LEFTL],scans[RIGHTR]);
 }
 }
if ((height+1) & 1) {

SciTech SNAP, Graphics Architecture 229

Graphics Device Driver Reference

 if (scans[LEFTR] < scans[RIGHTL]) {
 ColorPattScan(i,scans[LEFTL],scans[LEFTR]);
 ColorPattScan(i,scans[RIGHTL],scans[RIGHTR]);
 }
 else {
 ColorPattScan(i,scans[LEFTL],scans[RIGHTR]);
 }
 }

See Also
DrawEllipseList orPattEllipseList atEllipseList
DrawPattFatEllipseList

, DrawPattEllipseList, DrawCol , DrawF ,

SciTech SNAP, Graphics Architecture 230

Graphics Device Driver Reference

DrawColorPattRect

Draws a color pattern filled rectangle.

Declaration
void NAPI GA_2DRenderFuncs::DrawColorPattRect(
 N_int32 left,
 N_int32 top,
 N_int32 width,
 N_int32 height)

Prototype In
snap/graphics.h

Parameters
left Left coordinate of the rectangle to draw
top Top coordinate of the rectangle to draw
width Width of the rectangle in pixels
height Height of the rectangle in scanlines

Description
This function renders a monochrome patterned rectangle at the specified location in the
currently active mix and color pattern. This routine will render a rectangle from (Left,
Top) to (Left+Width-1, Height+Bottom-1) inclusive.

See Also
DrawRect ttRect, DrawPa , Set8x8ColorPattern, Use8x8ColorPattern

SciTech SNAP, Graphics Architecture 231

Graphics Device Driver Reference

DrawColorPattScanList

Draws a list of color patterned scanlines.

Declaration
void NAPI GA_2DRenderFuncs::DrawColorPattScanList(
 N_int32 y,
 N_int32 length,
 N_int16 *scans)

Prototype In
snap/graphics.h

Parameters
y Y coordinate for scanline
length Number of scanlines in the list
scans Pointer to an array of scanline data

Description
This function renders a list of color patterned scanlines starting at the specified location
with the currently active mix and color pattern. The scanline coordinates are passed as
an array of 16-bit integer coordinates, packed with the X1 coordinate followed by the X2
coordinate and so on. For each scanline in the list, this routine will render a scanline
from X1 to X2 (exclusive) at increasing Y coordinates. For scanlines where X2 < X1, the
X1 and X2 coordinates will be swapped, and for scanlines where X1 = X2, the scanline
will be skipped and nothing will be drawn.

See Also
DrawScan, DrawScanList, Draw , Set8x8ColorPattern, Use8x8ColorPattern ColorPattScanList

SciTech SNAP, Graphics Architecture 232

Graphics Device Driver Reference

DrawColorPattTrap

Draws a color patterned trapezoid.

Declaration
void NAPI GA_2DRenderFuncs::DrawColorPattTrap(
 GA_trap *trap)

Prototype In
snap/graphics.h

Parameters
trap Pointer to the GA_trap structure describing the trapezoid

wTrap

See Also
DrawTrap olorPattTrap canList

Description
This function renders a color patterned, flat topped and bottomed trapezoid in the
currently active mix and color pattern. The parameters for the trapezoid to be rendered
are passed in the GA_trap structure (note that all coordinates are in 16.16 fixed point
format). This function will always be provided, and will be the workhorse function for
rendering solid 2D polygons. After this function has been called, the driver will have
updated the y, x1 and x2 variables in the GA_trap structure to reflect the final values
after scan converting the trapezoid. This ensures that the high level code can properly
join up connected trapezoids to complete the rendering of a larger more complex
polygon. Refer to Dra for more information on the algorithm used to implement
this drawing function.

, DrawC , DrawS , Set8x8ColorPattern, Use8x8ColorPattern

SciTech SNAP, Graphics Architecture 233

Graphics Device Driver Reference

DrawEllipse

Draw a single pixel wide, outlined ellipse

Declaration
void NAPI GA_2DRenderFuncs::DrawEllipse(
 N_int32 left,
 N_int32 top,
 N_int32 A,
 N_int32 B)

Prototype In
snap/graphics.h

Parameters
left Left coordinate for first pixel in the ellipse
top Top coordinate for first pixel in the ellipse
A Major axis dimension
B Minor axis dimension

Description
This function draws a single pixel wide, outlined ellipse using the currently active
foreground color and mix.

See Also
ClipEllipse

SciTech SNAP, Graphics Architecture 234

Graphics Device Driver Reference

DrawEllipseList

Draws a list of solid scanlines for a filled ellipse engine back end.

Declaration
void NAPI GA_2DRenderFuncs::DrawEllipseList(
 N_int32 y,
 N_int32 length,
 N_int32 height,
 N_int16 *scans)

Prototype In
snap/graphics.h

Parameters
y Y coordinate for scanline
length Number of scanlines in the list
height Height of the ellipse minor axis
scans Pointer to an array of scanline data

Description
This function renders a list of solid scanlines starting at the specified location in the
currently active color and mix. This function forms the back end of a fast filled ellipse
rendering engine, but does not actually compute the scanlines in the list itself since the
the pixelisation rules are usually different for different device driver environments.

The scanline coordinates are passed as an array of 16-bit integer coordinates, packed
with the LEFT coordinate followed by the RIGHT coordinate and so on for each
scanline. For each scanline in the list, this routine will render a scanline from LEFT to
RIGHT (exclusive) at increasing Y coordinates. The calling code must always guarantee
that the LEFT coordinates will be less than the RIGHT coordinates, and that they will
never be equal for each scanline.

This function will always be provided by accelerated drivers, and will be implemented
with whatever hardware rendering function provides the fastest possible method of
rendering scanlines with the installed hardware.

The algorithm used internally in the drivers to render the list of scanlines is similar to
the following:

maxIndex = length-1;
for (i = 0,j = height; i < maxIndex; i++,j--,scans += 2) {
 SolidScan(i,scans[0],scans[1]);
 SolidScan(j,scans[0],scans[1]);
 }
if (!(height & 1))
 SolidScan(i,scans[0],scans[0]);

See Also
DrawPattEllipseList, DrawColorPattEllipseList, DrawFatEllipseList, DrawPattFatEllipseList,
DrawColorPattFatEllipseList

SciTech SNAP, Graphics Architecture 235

Graphics Device Driver Reference

DrawFatEllipseList

Draws a list of solid scanlines for a fat ellipse engine back end.

Declaration
void NAPI GA_2DRenderFuncs::DrawFatEllipseList(
 N_int32 y,
 N_int32 length,
 N_int32 height,
 N_int16 *scans)

Prototype In
snap/graphics.h

Parameters
y Y coordinate for scanline
length Number of scanlines in the list
height Height of the ellipse minor axis + pen height adjustment
scans Pointer to an array of scanline data

Description
This function renders a list of solid scanlines starting at the specified location in the
currently active color and mix. This function forms the back end of a fast fat pen ellipse
rendering engine, but does not actually compute the scanlines in the list itself since the
the pixelisation rules are usually different for different device driver environments.

The scanline coordinates are passed as an array of 16-bit integer coordinates, packed in
mutiples of 4 coordinates for a single scanline list. The first coordinate is the LEFTL
coordinate, the second is the LEFTR, the third is the RIGHTL and the fourth is the
RIGHTR coordinate. For each scanline in the list (each list defines two scanlines at the
same Y coordinate), this routine will render a scanline from LEFT to RIGHT (exclusive)
at increasing Y coordinates. The calling code must always guarantee that the LEFT
coordinates will be less than the RIGHT coordinates, and that they will never be equal
for each scanline.

This function will always be provided by accelerated drivers, and will be implemented
with whatever hardware rendering function provides the fastest possible method of
rendering scanlines with the installed hardware.

The algorithm used internally in the drivers to render the list of scanlines is similar to
the following:

for (i = 0,j = height; i < length; i++,j--,scans += 4) {
 if (scans[LEFTR] < scans[RIGHTL]) {
 SolidScan(i,scans[LEFTL],scans[LEFTR]);
 SolidScan(i,scans[RIGHTL],scans[RIGHTR]);
 SolidScan(j,scans[LEFTL],scans[LEFTR]);
 SolidScan(j,scans[RIGHTL],scans[RIGHTR]);
 }
 else {
 SolidScan(i,scans[LEFTL],scans[RIGHTR]);

SciTech SNAP, Graphics Architecture 236

Graphics Device Driver Reference

 SolidScan(j,scans[LEFTL],scans[RIGHTR]);
 }
 }
if ((height+1) & 1) {
 if (scans[LEFTR] < scans[RIGHTL]) {
 SolidScan(i,scans[LEFTL],scans[LEFTR]);
 SolidScan(i,scans[RIGHTL],scans[RIGHTR]);
 }
 else {
 SolidScan(i,scans[LEFTL],scans[RIGHTR]);
 }
 }

See Also
DrawEllipseList orPattEllipseList attFatEllipseList
DrawColorPattFatEllipseList

, DrawPattEllipseList, DrawCol , DrawP ,

SciTech SNAP, Graphics Architecture 237

Graphics Device Driver Reference

DrawLineInt

Draws a solid, single pixel wide line with integer coordinates.

Declaration
void NAPI GA_2DRenderFuncs::DrawLineInt(
 N_int32 x1,
 N_int32 y1,
 N_int32 x2,
 N_int32 y2,
 N_int32 drawLast)

Prototype In
snap/graphics.h

Parameters
x1 X1 coordinate
y1 Y1 coordinate
x2 X2 coordinate
y2 Y2 coordinate
drawLast 1 to draw last pixel, 0 to skip it

Description
This function renders a solid line at the specified location and the currently active color
and mix. This routine will render a line from (x1,y1) to (x2,y2) inclusive. If the drawLast
parameter is set, the last pixel in the line (x2,y2) will be drawn, otherwise it will be
skipped. This feature allows multiple lines to be linked together as a polyline for CAD
style operations while drawing in XOR mode (and is also required for compatibility
with Microsoft Windows).

See Also
DrawBresenhamLine awStyleLineInt
DrawClippedLineInt

, DrawStippleLine, DrawStippleLineInt, Dr ,

SciTech SNAP, Graphics Architecture 238

Graphics Device Driver Reference

DrawPattEllipseList

Draws a list of monochrome patterned scanlines for a filled ellipse engine back end.

Declaration
void NAPI GA_2DRenderFuncs::DrawPattEllipseList(
 N_int32 y,
 N_int32 length,
 N_int32 height,
 N_int16 *scans)

Prototype In
snap/graphics.h

Parameters
y Y coordinate for scanline
length Number of scanlines in the list
height Height of the ellipse minor axis
scans Pointer to an array of scanline data

Description
This function renders a list of monochrome patterned scanlines starting at the specified
location in the currently active colors, mix and monochrome pattern. This function
forms the back end of a fast filled ellipse rendering engine, but does not actually
compute the scanlines in the list itself since the the pixelisation rules are usually
different for different device driver environments.

The scanline coordinates are passed as an array of 16-bit integer coordinates, packed
with the LEFT coordinate followed by the RIGHT coordinate and so on for each
scanline. For each scanline in the list, this routine will render a scanline from LEFT to
RIGHT (exclusive) at increasing Y coordinates. The calling code must always guarantee
that the LEFT coordinates will be less than the RIGHT coordinates, and that they will
never be equal for each scanline.

The algorithm used internally in the drivers to render the list of scanlines is similar to
the following:

maxIndex = length-1;
for (i = 0,j = height; i < maxIndex; i++,j--,scans += 2) {
 PattScan(i,scans[0],scans[1]);
 PattScan(j,scans[0],scans[1]);
 }
if (!(height & 1))
 PattScan(i,scans[0],scans[0]);

See Also
DrawEllipseList
DrawColorPattFatEllipseList

, DrawColorPattEllipseList, DrawFatEllipseList, DrawPattFatEllipseList,

SciTech SNAP, Graphics Architecture 239

Graphics Device Driver Reference

DrawPattFatEllipseList

Draws a list of monochrome patterned scanlines for a fat ellipse engine back end.

Declaration
void NAPI GA_2DRenderFuncs::DrawPattFatEllipseList(
 N_int32 y,
 N_int32 length,
 N_int32 height,
 N_int16 *scans)

Prototype In
snap/graphics.h

Parameters
y Y coordinate for scanline
length Number of scanlines in the list
height Height of the ellipse minor axis + pen height adjustment
scans Pointer to an array of scanline data

Description
This function renders a list of monochrome patterned scanlines starting at the specified
location in the currently active colors, mix and monochrome pattern. This function
forms the back end of a fast fat pen ellipse rendering engine, but does not actually
compute the scanlines in the list itself since the the pixelisation rules are usually
different for different device driver environments.

The scanline coordinates are passed as an array of 16-bit integer coordinates, packed in
mutiples of 4 coordinates for a single scanline list. The first coordinate is the LEFTL
coordinate, the second is the LEFTR, the third is the RIGHTL and the fourth is the
RIGHTR coordinate. For each scanline in the list (each list defines two scanlines at the
same Y coordinate), this routine will render a scanline from LEFT to RIGHT (exclusive)
at increasing Y coordinates. The calling code must always guarantee that the LEFT
coordinates will be less than the RIGHT coordinates, and that they will never be equal
for each scanline.

The algorithm used internally in the drivers to render the list of scanlines is similar to
the following:

for (i = 0,j = height; i < length; i++,j--,scans += 4) {
 if (scans[LEFTR] < scans[RIGHTL]) {
 PattScan(i,scans[LEFTL],scans[LEFTR]);
 PattScan(i,scans[RIGHTL],scans[RIGHTR]);
 PattScan(j,scans[LEFTL],scans[LEFTR]);
 PattScan(j,scans[RIGHTL],scans[RIGHTR]);
 }
 else {
 PattScan(i,scans[LEFTL],scans[RIGHTR]);
 PattScan(j,scans[LEFTL],scans[RIGHTR]);
 }
 }
if ((height+1) & 1) {

SciTech SNAP, Graphics Architecture 240

Graphics Device Driver Reference

 if (scans[LEFTR] < scans[RIGHTL]) {
 PattScan(i,scans[LEFTL],scans[LEFTR]);
 PattScan(i,scans[RIGHTL],scans[RIGHTR]);
 }
 else {
 PattScan(i,scans[LEFTL],scans[RIGHTR]);
 }
 }

See Also
DrawEllipseList orPattEllipseList atEllipseList
DrawColorPattFatEllipseList

, DrawPattEllipseList, DrawCol , DrawF ,

SciTech SNAP, Graphics Architecture 241

Graphics Device Driver Reference

DrawPattRect

Draws a monochrome pattern filled rectangle.

Declaration
void NAPI GA_2DRenderFuncs::DrawPattRect(
 N_int32 left,
 N_int32 top,
 N_int32 width,
 N_int32 height)

Prototype In
snap/graphics.h

Parameters
left Left coordinate of the rectangle to draw
top Top coordinate of the rectangle to draw
width Width of the rectangle in pixels
height Height of the rectangle in scanlines

Description
This function renders a monochrome patterned rectangle at the specified location and in
the currently active colors, mix and monochrome pattern. This routine will render a
rectangle from (Left, Top) to (Left+Width-1, Height+Bottom-1) inclusive.

See Also
DrawRect olorPattRect, DrawC , Set8x8MonoPattern, Use8x8MonoPattern

SciTech SNAP, Graphics Architecture 242

Graphics Device Driver Reference

DrawPattScanList

Draws a list of monochrome patterned scanlines.

Declaration
void NAPI GA_2DRenderFuncs::DrawPattScanList(
 N_int32 y,
 N_int32 length,
 N_int16 *scans)

Prototype In
snap/graphics.h

Parameters
y Y coordinate for scanline
length Number of scanlines in the list
scans Pointer to an array of scanline data

Description
This function renders a list of monochrome patterned scanlines starting at the specified
location in the currently active colors, mix and monochrome pattern. The scanline
coordinates are passed as an array of 16-bit integer coordinates, packed with the X1
coordinate followed by the X2 coordinate and so on. For each scanline in the list, this
routine will render a scanline from X1 to X2 (exclusive) at increasing Y coordinates. For
scanlines where X2 < X1, the X1 and X2 coordinates will be swapped, and for scanlines
where X1 = X2, the scanline will be skipped and nothing will be drawn.

See Also
DrawScan, DrawScanList, Draw , Set8x8MonoPattern, Use8x8MonoPattern ColorPattScanList

SciTech SNAP, Graphics Architecture 243

Graphics Device Driver Reference

DrawPattTrap

Draws a monochrome patterned trapezoid.

Declaration
void NAPI GA_2DRenderFuncs::DrawPattTrap(
 GA_trap *trap)

Prototype In
snap/graphics.h

Parameters
trap Pointer to the GA_trap structure describing the trapezoid

Description
This function renders a monochrome patterned, flat topped and bottomed trapezoid in
the currently active color, mix and monochrome pattern. The parameters for the
trapezoid to be rendered are passed in the GA_trap structure (note that all coordinates
are in 16.16 fixed point format). This function will always be provided, and will be the
workhorse function for rendering solid 2D polygons. After this function has been called,
the driver will have updated the y, x1 and x2 variables in the GA_trap structure to reflect
the final values after scan converting the trapezoid. This ensures that the high level code
can properly join up connected trapezoids to complete the rendering of a larger more
complex polygon. Refer to DrawT for more information on the algorithm used to
implement this drawing function.

rap

DrawTrap olorPattTrap canList
See Also

, DrawC , DrawS , Set8x8MonoPattern, Use8x8MonoPattern

SciTech SNAP, Graphics Architecture 244

Graphics Device Driver Reference

DrawRect

Draws a solid filled rectangle.

Declaration
void NAPI GA_2DRenderFuncs::DrawRect(
 N_int32 left,
 N_int32 top,
 N_int32 width,
 N_int32 height)

Prototype In
snap/graphics.h

Parameters
left Left coordinate of the rectangle to draw
top Top coordinate of the rectangle to draw
width Width of the rectangle in pixels
height Height of the rectangle in scanlines

Description
This function renders a solid rectangle at the specified location and currently active color
and mix. This routine will render a rectangle from (Left, Top) to (Left+Width-
1,Height+Bottom-1) inclusive. This function will always be provided by accelerated
drivers, and will be implemented with whatever hardware rendering function provides
the fastest possible method of rendering rectangles with the installed hardware.

See Also
DrawPattRect ColorPattRect awRectLin wRectExt, Draw , Dr , Dra

SciTech SNAP, Graphics Architecture 245

Graphics Device Driver Reference

DrawRectExt

Draws a solid filled rectangle with specific color and mix

Declaration
void NAPI GA_2DRenderFuncs::DrawRectExt(
 N_int32 left,
 N_int32 top,
 N_int32 width,
 N_int32 height,
 GA_color color,
 N_int32 mix)

Prototype In
snap/graphics.h

Parameters
left Left coordinate of the rectangle to draw
top Top coordinate of the rectangle to draw
width
height
color
mix

Description

DrawRect ectLin

Width of the rectangle in pixels
Height of the rectangle in scanlines
Color to draw rectangle in
Mix code to draw with (GA_mixCodesType)

This function is identical to the DrawRect function, except that it also takes color and mix
to draw the rectangle with. This function is intended primarily for high performance
drawing of rectangles when changing the hardware state will be a performance burden.

See Also
, DrawR

SciTech SNAP, Graphics Architecture 246

Graphics Device Driver Reference

DrawRectLin

Draws a solid filled rectangle with a linear source address.

Prototype In

dstOfs
dstPitch
left
top
width
height Height of the rectangle in scanlines

mix

wRect

Note: The value of dstOfs must be aligned to the boundary specified in the BitmapStartAlign

Declaration
void NAPI GA_2DRenderFuncs::DrawRectLin(
 N_int32 dstOfs,
 N_int32 dstPitch,
 N_int32 left,
 N_int32 top,
 N_int32 width,
 N_int32 height,
 GA_color color,
 N_int32 mix)

snap/graphics.h

Parameters
Offset of destination rectangle in video memory
Pitch of destination rectangle in bytes
Left coordinate of the rectangle to draw
Top coordinate of the rectangle to draw
Width of the rectangle in pixels

color Color to draw rectangle in
Mix code to draw with (GA_mixCodesType)

Description
This function is identical to the DrawRect function, except that it also takes a destination
linear offset, pitch, color and mix. This function is intended primarily for high
performance DirectDraw compatibility for hardware that supports non-conforming
linear memory addressing. For hardware that implements only (x,y) addressing, this
function should not be implemented and DirectDraw will call the regular Dra
function.

member of the GA_modeInfo structure, and the dstPitch value must be padded to
multiples of the BitmapStridePad member of the GA_modeInfo structure.

See Also
DrawRect ectExt, DrawR

SciTech SNAP, Graphics Architecture 247

Graphics Device Driver Reference

DrawScanList

Draws a list of solid scanlines.

Declaration
void NAPI GA_2DRenderFuncs::DrawScanList(
 N_int32 y,
 N_int32 length,
 N_int16 *scans)

Parameters
y

This function renders a list of solid scanlines starting at the specified location in the
currently active color and mix. The scanline coordinates are passed as an array of 16-bit
integer coordinates, packed with the X1 coordinate followed by the X2 coordinate and so
on. For each scanline in the list, this routine will render a scanline from X1 to X2
(exclusive) at increasing Y coordinates. For scanlines where X2 < X1, the X1 and X2
coordinates will be swapped, and for scanlines where X1 = X2, the scanline will be
skipped and nothing will be drawn. This function will always be provided by
accelerated drivers, and will be implemented with whatever hardware rendering
function provides the fastest possible method of rendering scanlines with the installed
hardware. It is also one of the workhorse functions that will be used by high level
rendering code for drawing non-polygonal solid shapes (ellipses, wedges, regions etc.).

wColorPattScanList

Prototype In
snap/graphics.h

Y coordinate for scanline
length Number of scanlines in the list
scans Pointer to an array of scanline data

Description

See Also
DrawScan, DrawPattScanList, Dra

SciTech SNAP, Graphics Architecture 248

Graphics Device Driver Reference

DrawStippleLineInt

Draws a stippled, single pixel wide line with integer coordinates.

Parameters

transparent

This function renders a stippled line at the specified location and the currently active
colors, mix and stipple pattern. This routine will render a line from (x1,y1) to (x2,y2)
inclusive. If the drawLast parameter is set, the last pixel in the line (x2,y2) will be drawn,
otherwise it will be skipped. This feature allows multiple lines to be linked together as a
polyline for CAD style operations while drawing in XOR mode (and is also required for
compatibility with Microsoft Windows).

DrawBresenhamStippleLine, DrawLineInt, SetLineStipple, SetLineStippleCount

Declaration
void NAPI GA_2DRenderFuncs::DrawStippleLineInt(
 N_int32 x1,
 N_int32 y1,
 N_int32 x2,
 N_int32 y2,
 N_int32 drawLast,
 N_int32 transparent)

Prototype In
snap/graphics.h

x1 X1 coordinate
y1 Y1 coordinate
x2 X2 coordinate
y2 Y2 coordinate
drawLast 1 to draw last pixel, 0 to skip it

1 if the line is transparent, 0 if opaque

Description

If the transparent parameter is set to 1, where a bit is 0 in the stipple pattern the
destination pixel remains untouched. If the transparent parameter is set to 0, where a bit
is 0 in the stipple pattern the destination pixel is drawn in the background color. In all
cases where a bit in the stipple pattern is 1, the pixel is drawn in the foreground color.

See Also

SciTech SNAP, Graphics Architecture 249

Graphics Device Driver Reference

DrawStyleLineInt

Draws a OS/2 style styled, single pixel wide line with integer coordinates.

Declaration

snap/graphics.h

X1 coordinate
Y1 coordinate
X2 coordinate

y2 Y2 coordinate

If the transparent parameter is set to 1, where a bit is 0 in the style pattern the
destination pixel remains untouched. If the transparent parameter is set to 0, where a bit
is 0 in the style pattern the destination pixel is drawn in the background color. In all
cases where a bit in the style pattern is 1, the pixel is drawn in the foreground color.

DrawBresenhamStyleLine

void NAPI GA_2DRenderFuncs::DrawStyleLineInt(
 N_int32 x1,
 N_int32 y1,
 N_int32 x2,
 N_int32 y2,
 N_int32 drawLast,
 N_int32 transparent)

Prototype In

Parameters
x1
y1
x2

drawLast 1 to draw last pixel, 0 to skip it
transparent 1 if the line is transparent, 0 if opaque

Description
This function renders an OS/2 style styled line at the specified location and the currently
active colors, mix and style pattern. This routine will render a line from (x1,y1) to (x2,y2)
inclusive. If the drawLast parameter is set, the last pixel in the line (x2,y2) will be drawn,
otherwise it will be skipped. This feature allows multiple lines to be linked together as a
polyline for CAD style operations while drawing in XOR mode (and is also required for
compatibility with Microsoft Windows).

See Also
, DrawLineInt, SetLineStyle

SciTech SNAP, Graphics Architecture 250

Graphics Device Driver Reference

DrawTrap

Draws a solid trapezoid.

Declaration
void NAPI GA_2DRenderFuncs::DrawTrap(
 GA_trap *trap)

Parameters

This function renders a solid, flat topped and bottomed trapezoid in the currently active
color and mix. The parameters for the trapezoid to be rendered are passed in the
GA_trap structure (note that all coordinates are in 16.16 fixed point format). This function
will always be provided, and will be the workhorse function for rendering solid 2D
polygons. After this function has been called, the driver will have updated the y, x1 and
x2 variables in the GA_trap structure to reflect the final values after scan converting the
trapezoid. This ensures that the high level code can properly join up connected
trapezoids to complete the rendering of a larger more complex polygon. The standard
algorithm for implementing this is C is as follows (note that it handles edges that can
cross within the trapezoid properly):

// Update returned input parameters
trap.y = y;
trap.x1 = x1;
trap.x2 = x2;

DrawPattTrap olorPattTrap

Prototype In
snap/graphics.h

trap Pointer to the GA_trap structure describing the trapezoid

Description

// Get input parameters into locals
N_int32 y = trap.y;
N_fix32 x1 = trap.x1;
N_fix32 x2 = trap.x2;

// Scan the trapezoid
while (trap.count--) {
 int ix1 = FIXROUND(x1);
 int ix2 = FIXROUND(x2);
 if (ix2 < ix1)
 SWAP(ix1,ix2);
 if (ix1 < ix2)
 scanLine(trap.y,ix1,ix2);
 x1 += slope1;
 x2 += slope2;
 y++;
 }

See Also
, DrawC , DrawScanList

SciTech SNAP, Graphics Architecture 251

Graphics Device Driver Reference

DstTransBlt

Copy a block of video memory to another location in video memory with destination
transparency.

Declaration
void NAPI GA_2DRenderFuncs::DstTransBlt(
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 width,
 N_int32 height,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 mix,
 GA_color transparent)

snap/graphics.h

mix

Prototype In

Parameters
srcLeft Left coordinate of the source rectangle to copy
srcTop Top coordinate of the source rectangle to copy
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination

Mix code for the copy (GA_mixCodesType)
transparent Transparent color value

Description
This function copies a rectangular region of video memory from one location to another
with destination transparency. This routine will copy a rectangular region of video
memory from (srcLeft, srcTop, srcLft+width-1, srcTop+height-1) to (dstLeft, dstTop)
within video memory with the specified mix and with destination transparency. The
mix code will be used to combine the source bitmap data with the pixels in the
destination bitmap. The transparent color passed will be used to mask out pixels in the
destination bitmap from being written. Where a pixel in the destination bitmap matches
the transparent color, the pixel will be written to the destination bitmap. The results of
this function are undefined if the source and destination rectangles overlap.

Note: Although you can achieve the same effect of this routine using the generic BitBltFx
function, this function is provided separately as it is usually a workhorse function for
sprite based game applications and needs to be as efficient as possible.

See Also
DstTransBltLin sBltSys TransBltBM tFx, DstTran , Dst , DstTransBlt, BitBlt, BitBl

SciTech SNAP, Graphics Architecture 252

Graphics Device Driver Reference

DstTransBltBM

Copy a block of system memory to a location in video memory with Bus Mastering and
destination transparency.

Declaration
void NAPI GA_2DRenderFuncs::DstTransBltBM(
 void *srcAddr,
 N_int32 srcPhysAddr,
 N_int32 srcPitch,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 width,
 N_int32 height,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 mix,
 GA_color transparent)

Prototype In
snap/graphics.h

Parameters
srcAddr Address of source bitmap in system memory
srcPhysAddr Physical address of source bitmap in system memory
srcPitch Pitch of source bitmap in bytes
srcLeft Left coordinate within source bitmap to copy
srcTop Top coordinate within source bitmap to copy
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
mix Mix code for the copy (GA_mixCodesType)
transparent Transparent color value

Description
This routine will copy a bitmap from system memory with a physical starting address of
srcPhysAddr to the destination rectangle (dstLeft, dstTop, dstLeft+width-1,
dstTop+height-1) with the specified mix and with destination transparency. The mix
code will be used to combine the source bitmap data with the pixels in the destination
bitmap. The transparent color passed will be used to mask out pixels in the destination
bitmap from being written. Where a pixel in the destination bitmap matches the
transparent color, the pixel will be written to the destination bitmap. The srcPhysAddr
value points to the start of the bitmap data in system memory as a physical memory
address, not a linear memory address that the application software normally deals with.
It is up to the calling application to use the necessary OS services to allocate a block of
contiguous physical memory for the bitmap data, and to obtain the physical memory
address to be passed into this function.

SciTech SNAP, Graphics Architecture 253

Graphics Device Driver Reference

This version is different to the DstTransBltSys function in that the bitmap data is copied
using Bus Mastering by the graphics accelerator, which allows this function to return
before the copy has completed and the accelerator will complete the copy in the
background with a DMA Bus Master operation. If this hardware supports Bus Mastering
and this function is available, it will usually be the fastest method to copy a block of
system memory to video memory.

Note that the srcLeft and srcTop coordinates define an offset within the source bitmap to
be copied, so it will copy only a portion of the memory bitmap.

Note: Although you can achieve the same effect of this routine using the generic BitBltFxBM
function, this function is provided separately as it is usually a workhorse function for
sprite based game applications and needs to be as efficient as possible.

See Also
DstTransBlt sBltSys TransBlt, DstTransBltLin, DstTran , Dst , BitBlt, BitBltFx

SciTech SNAP, Graphics Architecture 254

Graphics Device Driver Reference

DstTransBltLin

Copy a linear block of video memory to another location in video memory with
destination transparency.

Declaration
void NAPI GA_2DRenderFuncs::DstTransBltLin(
 N_int32 srcOfs,
 N_int32 srcPitch,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 width,
 N_int32 height,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 mix,
 GA_color transparent)

Prototype In
snap/graphics.h

Parameters
srcOfs Offset of source bitmap in video memory
srcPitch Pitch of source bitmap in bytes
srcLeft Left coordinate within source bitmap to copy
srcTop Top coordinate within source bitmap to copy
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
mix Mix code for the copy (GA_mixCodesType)
transparent Transparent color value

Description
This routine will copy a linear region of video memory from srcOfs from the start of
video memory to the destination rectangle (dstLeft, dstTop, dstLeft+width-1,
dstTop+height-1) with the specified mix and with destination transparency. The mix
code will be used to combine the source bitmap data with the pixels in the destination
bitmap. The transparent color passed will be used to mask out pixels in the destination
bitmap from being written. Where a pixel in the destination bitmap matches the
transparent color, the pixel will be written to the destination bitmap. Note that the value
of srcOfs must be aligned to the boundary specified in the BitmapStartAlign member of
the GA_mod structure, and the srcPitch value must be padded to multiples of the
BitmapStridePad member of the GA_modeInfo structure. The results of this routine are
undefined if the video memory regions overlap.

eInfo

Note that the srcLeft and srcTop coordinates define an offset within the source bitmap to
be copied, so it will copy only a portion of an offscreen bitmap. This is useful for storing
multiple images in a single offscreen bitmap, or for handling the case of software

SciTech SNAP, Graphics Architecture 255

Graphics Device Driver Reference

clipping offscreen bitmaps if the destination lies outside of the software clip rectangle
for the destination buffer.

This version is different to the standard BitBlt function in that the source bitmap to be
copied can be non-conforming, and can have a different logical scanline width to the
destination bitmap. This allows the bitmaps to be stored contiguously in offscreen video
memory, rather than requiring the offscreen video memory to be divided up into
rectangular regions, resulting in more efficient use of available offscreen memory for
bitmap storage.

Note: The value of srcOfs must be aligned to the boundary specified in the BitmapStartAlign
member of the GA_modeInfo structure, and the dstPitch value must be padded to
multiples of the BitmapStridePad member of the GA_ structure. modeInfo

Note: Although you can achieve the same effect of this routine using the generic BitBltFxLin
function, this function is provided separately as it is usually a workhorse function for
sprite based game applications and needs to be as efficient as possible.

See Also
DstTransBlt sBltBM TransBlt, DstTransBltSys, DstTran , Dst , BitBlt, BitBltFx

SciTech SNAP, Graphics Architecture 256

Graphics Device Driver Reference

DstTransBltSys

Copy a block of system memory to a location in video memory with destination
transparency.

Declaration
void NAPI GA_2DRenderFuncs::DstTransBltSys(
 void *srcAddr,
 N_int32 srcPitch,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 width,
 N_int32 height,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 mix,
 GA_color transparent,
 N_int32 flipY)

Prototype In
snap/graphics.h

Parameters
srcAddr Address of source bitmap in system memory
srcPitch Pitch of source bitmap in bytes
srcLeft Left coordinate within source bitmap to copy
srcTop Top coordinate within source bitmap to copy
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
mix Mix code for the copy (GA_mixCodesType)
transparent Transparent color value
flipY True if the image should be flipped vertically

Description
This routine will copy a bitmap from system memory with a starting address of srcAddr
to the destination rectangle (dstLeft, dstTop, dstLeft+width-1, dstTop+height-1) with the
specified mix and with destination transparency. The mix code will be used to combine
the source bitmap data with the pixels in the destination bitmap. The transparent color
passed will be used to mask out pixels in the destination bitmap from being written.
Where a pixel in the destination bitmap matches the transparent color, the pixel will be
written to the destination bitmap.

Note that the srcLeft and srcTop coordinates define an offset within the source bitmap to
be copied, so it will copy only a portion of the memory bitmap.

Note: Although you can achieve the same effect of this routine using the generic BitBltFxSys
function, this function is provided separately as it is usually a workhorse function for
sprite based game applications and needs to be as efficient as possible.

SciTech SNAP, Graphics Architecture 257

Graphics Device Driver Reference

See Also
DstTransBlt sBltBM TransBlt, DstTransBltLin, DstTran , Dst , BitBlt, BitBltFx

SciTech SNAP, Graphics Architecture 258

Graphics Device Driver Reference

GetBitmapBM

Copy a block of video memory to a location in system memory with Bus Mastering.

Declaration
void NAPI GA_2DRenderFuncs::GetBitmapBM(
 void *dstAddr,
 N_int32 dstPhysAddr,
 N_int32 dstPitch,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 width,
 N_int32 height,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 mix)

Prototype In
snap/graphics.h

Parameters
dstAddr Address of destination bitmap in system memory
dstPhysAddr Physical address of destination bitmap in system memory
dstPitch Pitch of destination bitmap in bytes
srcLeft Left coordinate within source bitmap to copy
srcTop Top coordinate within source bitmap to copy
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
mix Mix code for the copy (GA_mixCodesType)

Description
This routine will copy a bitmap from video memory to system memory with a starting
address of dstPhysAddr from the source rectangle (srcLeft, srcTop, srcLeft+width-1,
srcTop+height-1). The dstPhysAddr value points to the start of the destination bitmap
data in system memory as a physical memory address, not a linear memory address that
the application software normally deals with. It is up to the calling application to use the
necessary OS services to allocate a block of contiguous physical memory for the bitmap
data, and to obtain the physical memory address to be passed into this function.

Note: This function is only implemented for hardware that can do bus master reads over the PCI
bus, and may be significantly faster than code that simply does direct reads over the PCI
bus. Note that this function may return before the bus master operation has completed,
and the application code should call the WaitTillIdle function to determine when the bus
master operation has completed before using the data in the destination bitmap buffer.

See Also
BitBlt, WaitTillIdle, GetBitmapSys

SciTech SNAP, Graphics Architecture 259

Graphics Device Driver Reference

GetBitmapSys

Copy a block of video memory to a location in system memory.

Declaration
void NAPI GA_2DRenderFuncs::GetBitmapSys(
 void *dstAddr,
 N_int32 dstPitch,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 width,
 N_int32 height,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 mix)

Prototype In
snap/graphics.h

Parameters
dstAddr Address of destination bitmap in system memory
dstPitch Pitch of destination bitmap in bytes
srcLeft Left coordinate within source bitmap to copy
srcTop Top coordinate within source bitmap to copy
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
mix Mix code for the copy (GA_mixCodesType)

Description
This routine will copy a bitmap from video memory to system memory with a starting
address of dstAddr from the source rectangle (srcLeft, srcTop, srcLeft+width-1,
srcTop+height-1).

See Also
BitBlt tBitmapBM, WaitTillIdle, Ge

SciTech SNAP, Graphics Architecture 260

Graphics Device Driver Reference

GetPixel

Reads a pixel value from the framebuffer

Declaration
GA_color NAPI GA_2DRenderFuncs::GetPixel(
 N_int32 x,
 N_int32 y)

Prototype In
snap/graphics.h

Parameters
x X coordinate to read pixel value from
y Y coordinate to read pixel value from

Description
This function reads the color of a single pixel from the framebuffer.

See Also
PutPixel

SciTech SNAP, Graphics Architecture 261

Graphics Device Driver Reference

PutMonoImageLSBBM

Draws a monochrome bitmap stored in system memory with bus mastering

Declaration
void NAPI GA_2DRenderFuncs::PutMonoImageLSBBM(
 N_int32 x,
 N_int32 y,
 N_int32 width,
 N_int32 height,
 N_int32 byteWidth,
 N_uint8 *image,
 N_int32 imagePhysAddr,
 N_int32 transparent)

Prototype In
snap/graphics.h

Parameters
x Destination X coordinate to draw the bitmap at
y Destination Y coordinate to draw the bitmap at
width Width of the bitmap in pixels
height Height of the bitmap in pixels
byteWidth Width of the bitmap in bytes
image Pointer to the bitmap image data to draw
imagePhysAddr Physical address of bitmap image data in system

memory
transparent 1 for transparent, 0 for opaque

Description
This function is identical to the Put function, except that it processes
the bitmap data in LSB fashion. This means that the first pixel drawn corrsponds to bit 0
of the first byte. The second pixel is bit 1 of the first byte, ...,the 8th pixel is bit 0 of the
second byte etc. Both LSB and MSB versions are provided for performance.

MonoImageMSBBM

PutMonoImageLSBSys
PutMonoImageMSBLin utMonoImageMSBBM eLSBSys
ClipMonoImageLSBLin
ClipMonoImageMSBLin

See Also
, PutMonoImageLSBBM, PutMonoImageMSBSys,
, P , ClipMonoImag ,
, ClipMonoImageLSBBM, ClipMonoImageMSBSys,
, ClipMonoImageMSBBM

SciTech SNAP, Graphics Architecture 262

Graphics Device Driver Reference

PutMonoImageLSBLin

Draws a monochrome bitmap stored in offscreen video memory

Declaration
void NAPI GA_2DRenderFuncs::PutMonoImageLSBLin(
 N_int32 x,
 N_int32 y,
 N_int32 width,
 N_int32 height,
 N_int32 byteWidth,
 N_int32 imageOfs,
 N_int32 transparent)

Prototype In
snap/graphics.h

Parameters
x Destination X coordinate to draw the bitmap at
y Destination Y coordinate to draw the bitmap at
width Width of the bitmap in pixels
height Height of the bitmap in pixels
byteWidth Width of the bitmap in bytes
imageOfs Offset of bitmap image data in video memory (byte

address)
transparent 1 for transparent, 0 for opaque

Description
This function is identical to the Put function, except that it processes
the bitmap data in LSB fashion. This means that the first pixel drawn corrsponds to bit 0
of the first byte. The second pixel is bit 1 of the first byte, ...,the 8th pixel is bit 0 of the
second byte etc. Both LSB and MSB versions are provided for performance.

MonoImageMSBLin

Note: The value of imageOfs must be aligned to the boundary specified in the
MonoBitmapStartAlign member of the GA_modeInfo structure, and the byteWidth value
must be padded to multiples of the MonoBitmapStridePad member of the GA_modeInfo
structure.

See Also
PutMonoImageLSBSys, PutMonoImageLSBBM, PutMonoImageMSBSys,
PutMonoImageMSBLin, PutMonoImageMSBBM, ClipMonoImageLSBSys,
ClipMonoImageLSBLin, ClipMonoImageLSBBM, ClipMonoImageMSBSys,
ClipMonoImageMSBLin, ClipMonoImageMSBBM

SciTech SNAP, Graphics Architecture 263

Graphics Device Driver Reference

PutMonoImageLSBSys

Draws a monochrome bitmap stored in system memory

Declaration
void NAPI GA_2DRenderFuncs::PutMonoImageLSBSys(
 N_int32 x,
 N_int32 y,
 N_int32 width,
 N_int32 height,
 N_int32 byteWidth,
 N_uint8 *image,
 N_int32 transparent)

Prototype In
snap/graphics.h

Parameters
x Destination X coordinate to draw the bitmap at
y Destination Y coordinate to draw the bitmap at
width Width of the bitmap in pixels
height Height of the bitmap in pixels
byteWidth Width of the bitmap in bytes
image Pointer to the bitmap image data to draw
transparent 1 for transparent, 0 for opaque

Description
This function is identical to the Put function, except that it processes
the bitmap data in LSB fashion. This means that the first pixel drawn corrsponds to bit 0
of the first byte. The second pixel is bit 1 of the first byte, ...,the 8th pixel is bit 0 of the
second byte etc. Both LSB and MSB versions are provided for performance.

MonoImageMSBSys

PutMonoImageLSBLin utMonoImageLSBBM
PutMonoImageMSBLin utMonoImageMSBBM eLSBSys
ClipMonoImageLSBLin
ClipMonoImageMSBLin

See Also
, P , PutMonoImageMSBSys,
, P , ClipMonoImag ,
, ClipMonoImageLSBBM, ClipMonoImageMSBSys,
, ClipMonoImageMSBBM

SciTech SNAP, Graphics Architecture 264

Graphics Device Driver Reference

PutMonoImageMSBBM

Draws a monochrome bitmap stored in system memory with bus mastering

Declaration
void NAPI GA_2DRenderFuncs::PutMonoImageMSBBM(
 N_int32 x,
 N_int32 y,
 N_int32 width,
 N_int32 height,
 N_int32 byteWidth,
 N_uint8 *image,
 N_int32 imagePhysAddr,
 N_int32 transparent)

Prototype In
snap/graphics.h

Parameters
x Destination X coordinate to draw the bitmap at
y Destination Y coordinate to draw the bitmap at
width Width of the bitmap in pixels
height Height of the bitmap in pixels
byteWidth Width of the bitmap in bytes
image Pointer to the bitmap image data to draw
imagePhysAddr Physical address of bitmap image data in system

memory
transparent 1 for transparent, 0 for opaque

Description
This function copies a monochrome bitmap image from a system memory buffer to
video memory using the hardware accelerator, which is used for fast bitmap masking
and font rendering operations. The bitmap is rendered in the specified colors using the
currently active mix. This function is identical to PutMonoImageMSBSy , except that the
bitmap data transferred to video memory using a bus master DMA operation, and the
imagePhysAddr is the physical memory address of the image in system memory (and
the bitmap data must be physically contiguous in memory).

s

PutMonoImageMSBSys
PutMonoImageLSBLin utMonoImageLSBBM
ClipMonoImageLSBLin
ClipMonoImageMSBLin

See Also
, PutMonoImageMSBBM, PutMonoImageMSBSys,

, P , ClipMonoImageLSBSys,
, ClipMonoImageLSBBM, ClipMonoImageMSBSys,
, ClipMonoImageMSBBM

SciTech SNAP, Graphics Architecture 265

Graphics Device Driver Reference

PutMonoImageMSBLin

Draws a monochrome bitmap stored in offscreen video memory

Declaration
void NAPI GA_2DRenderFuncs::PutMonoImageMSBLin(
 N_int32 x,
 N_int32 y,
 N_int32 width,
 N_int32 height,
 N_int32 byteWidth,
 N_int32 imageOfs,
 N_int32 transparent)

Prototype In
snap/graphics.h

Parameters
x Destination X coordinate to draw the bitmap at
y Destination Y coordinate to draw the bitmap at
width Width of the bitmap in pixels
height Height of the bitmap in pixels
byteWidth Width of the bitmap in bytes
imageOfs Offset of bitmap image data in video memory (byte

address)
transparent 1 for transparent, 0 for opaque

Description
This function copies a monochrome bitmap image from a video memory buffer to video
memory using the hardware accelerator, which is used for fast bitmap masking and font
rendering operations. The bitmap is rendered in the specified colors using the currently
active mix. This function is identical to PutMonoImageMSBS , except that the bitmap
data is taken from a packed bitmap image in video memory, with the imageOfs
parameter pointing to the start of the bitmap in video memory.

ys

Note: The value of imageOfs must be aligned to the boundary specified in the
MonoBitmapStartAlign member of the GA_modeInfo structure, and the byteWidth value
must be padded to multiples of the MonoBitmapStridePad member of the GA_modeInfo
structure.

See Also
PutMonoImageMSBSys
PutMonoImageLSBLin utMonoImageLSBBM
ClipMonoImageLSBLin
ClipMonoImageMSBLin

, PutMonoImageMSBBM, PutMonoImageMSBSys,
, P , ClipMonoImageLSBSys,
, ClipMonoImageLSBBM, ClipMonoImageMSBSys,
, ClipMonoImageMSBBM

SciTech SNAP, Graphics Architecture 266

Graphics Device Driver Reference

PutMonoImageMSBSys

Draws a monochrome bitmap stored in system memory

Declaration
void NAPI GA_2DRenderFuncs::PutMonoImageMSBSys(
 N_int32 x,
 N_int32 y,
 N_int32 width,
 N_int32 height,
 N_int32 byteWidth,
 N_uint8 *image,
 N_int32 transparent)

Prototype In
snap/graphics.h

Parameters
x Destination X coordinate to draw the bitmap at
y Destination Y coordinate to draw the bitmap at
width Width of the bitmap in pixels
height Height of the bitmap in pixels
byteWidth Width of the bitmap in bytes
image Pointer to the bitmap image data to draw
transparent 1 for transparent, 0 for opaque

Description
This function copies a monochrome bitmap image from a system memory buffer to
video memory using the hardware accelerator, which is used for fast bitmap masking
and font rendering operations. The bitmap is rendered using the currently active colors
and mix.

The x and y parameters define the destination coordinate for the image, and the width
and height parameters define the dimensions of the monochrome image to be displayed.
The byteWidth parameter defines the width of the bitmap image in bytes, and must be
equal to the value of (width + 7) / 8. Hence the width parameter is used to clip off
unwanted pixels on the right hand edge of the bitmap, but it cannot clip off more than a
single bytes worth of pixels. The image pointer points to the start of the monochrome
image in system memory and is byte packed.

If the transparent parameter is set to 1, where a bit is 0 in the bitmap image the
destination pixel remains untouched. If the transparent parameter is set to 0, where a bit
is 0 in the bitmap image the destination pixel is drawn in the background color. In all
cases where a bit in the bitmap image is 1, the pixel is drawn in the foreground color.

Note: This function processes the bitmap data in MSB fashion, in that the first pixel drawn
corrsponds to bit 7 of the first byte. The second pixel is bit 6 of the first byte, ...,the 8th
pixel is bit 7 of the second byte etc. Both LSB and MSB versions are provided for
performance.

SciTech SNAP, Graphics Architecture 267

Graphics Device Driver Reference

Note: Both the MSB and LSB versions should only be implemented if the hardware supports
both bitmap processing modes. If the hardware only supports one mode, only that mode
must be implemented so that the higher level code can use the most optimal method of bit-
swizzling the bitmap data before sending it to the driver.

See Also
PutMonoImageMSBLin utMonoImageMSBBM
PutMonoImageLSBLin utMonoImageLSBBM
ClipMonoImageLSBLin
ClipMonoImageMSBLin

, P , PutMonoImageMSBSys,
, P , ClipMonoImageLSBSys,
, ClipMonoImageLSBBM, ClipMonoImageMSBSys,
, ClipMonoImageMSBBM

SciTech SNAP, Graphics Architecture 268

Graphics Device Driver Reference

PutPixel

Draws a pixel value into the framebuffer

Declaration
void NAPI GA_2DRenderFuncs::PutPixel(
 N_int32 x,
 N_int32 y)

Prototype In
snap/graphics.h

Parameters
x X coordinate to draw pixel at
y Y coordinate to draw pixel at

Description
This function draws a single pixel into the framebuffer using the current active
foreground color and mix.

See Also
GetPixel

SciTech SNAP, Graphics Architecture 269

Graphics Device Driver Reference

SrcTransBlt

Copy a block of video memory to another location in video memory with source
transparency.

Declaration
void NAPI GA_2DRenderFuncs::SrcTransBlt(
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 width,
 N_int32 height,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 mix,
 GA_color transparent)

Prototype In
snap/graphics.h

Parameters
srcLeft Left coordinate of the source rectangle to copy
srcTop Top coordinate of the source rectangle to copy
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
mix Mix code for the copy (GA_mixCodesType)
transparent Transparent color value

Description
This function copies a rectangular region of video memory from one location to another
with source transparency. This routine will copy a rectangular region of video memory
from (srcLeft, srcTop, srcLft+width-1, srcTop+height-1) to (dstLeft, dstTop) within video
memory with the specified mix and with source transparency. The mix code will be used
to combine the source bitmap data with the pixels in the destination bitmap. The
transparent color passed will be used to mask out pixels in the source bitmap from being
written to the destination area. Where a pixel in the source bitmap matches the
transparent color, the pixel will not be written to the destination bitmap. The results of
this function are undefined if the source and destination rectangles overlap.

Note: Although you can achieve the same effect of this routine using the generic BitBltFx
function, this function is provided separately as it is usually a workhorse function for
sprite based game applications and needs to be as efficient as possible.

See Also
SrcTransBltLin tBlt, SrcTransBltSys, SrcTransBltBM, DstTransBlt, Bi , BitBltFx

SciTech SNAP, Graphics Architecture 270

Graphics Device Driver Reference

SrcTransBltBM

Copy a block of system memory to a location in video memory with Bus Mastering and
source transparency.

Declaration
void NAPI GA_2DRenderFuncs::SrcTransBltBM(
 void *srcAddr,
 N_int32 srcPhysAddr,
 N_int32 srcPitch,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 width,
 N_int32 height,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 mix,
 GA_color transparent)

Prototype In
snap/graphics.h

Parameters
srcAddr Address of source bitmap in system memory
srcPhysAddr Physical address of source bitmap in system memory
srcPitch Pitch of source bitmap in bytes
srcLeft Left coordinate within source bitmap to copy
srcTop Top coordinate within source bitmap to copy
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
mix Mix code for the copy (GA_mixCodesType)
transparent Transparent color value

Description
This routine will copy a bitmap from system memory with a physical starting address of
srcPhysAddr to the destination rectangle (dstLeft, dstTop, dstLeft+width-1,
dstTop+height-1) with the specified mix and with source transparency. The mix code
will be used to combine the source bitmap data with the pixels in the destination bitmap.
The transparent color passed will be used to mask out pixels in the source bitmap from
being written to the destination area. Where a pixel in the source bitmap matches the
transparent color, the pixel will not be written to the destination bitmap. The
srcPhysAddr value points to the start of the bitmap data in system memory as a physical
memory address, not a linear memory address that the application software normally
deals with. It is up to the calling application to use the necessary OS services to allocate a
block of contiguous physical memory for the bitmap data, and to obtain the physical
memory address to be passed into this function.

SciTech SNAP, Graphics Architecture 271

Graphics Device Driver Reference

This version is different to the SrcTra function in that the bitmap data is copied
using Bus Mastering by the graphics accelerator, which allows this function to return
before the copy has completed and the accelerator will complete the copy in the
background with a DMA Bus Master operation. If this hardware supports Bus Mastering
and this function is available, it will usually be the fastest method to copy a block of
system memory to video memory.

nsBltSys

Note that the srcLeft and srcTop coordinates define an offset within the source bitmap to
be copied, so it will copy only a portion of the memory bitmap.

Note: Although you can achieve the same effect of this routine using the generic BitBltFxBM
function, this function is provided separately as it is usually a workhorse function for
sprite based game applications and needs to be as efficient as possible.

See Also
SrcTransBlt in ransBlt lt, SrcTransBltL , SrcTransBltSys, DstT , BitB , BitBltFx

SciTech SNAP, Graphics Architecture 272

Graphics Device Driver Reference

SrcTransBltLin

Copy a linear block of video memory to another location in video memory with source
transparency.

Declaration
void NAPI GA_2DRenderFuncs::SrcTransBltLin(
 N_int32 srcOfs,
 N_int32 srcPitch,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 width,
 N_int32 height,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 mix,
 GA_color transparent)

Prototype In
snap/graphics.h

Parameters
srcOfs Offset of source bitmap in video memory
srcPitch Pitch of source bitmap in bytes
srcLeft Left coordinate within source bitmap to copy
srcTop Top coordinate within source bitmap to copy
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
mix Mix code for the copy (GA_mixCodesType)
transparent Transparent color value

Description
This routine will copy a linear region of video memory from srcOfs from the start of
video memory to the destination rectangle (dstLeft, dstTop, dstLeft+width-1,
dstTop+height-1) with the specified mix and with source transparency. The mix code
will be used to combine the source bitmap data with the pixels in the destination bitmap.
The transparent color passed will be used to mask out pixels in the source bitmap from
being written to the destination area. Where a pixel in the source bitmap matches the
transparent color, the pixel will not be written to the destination bitmap. Note that the
value of srcOfs must be aligned to the boundary specified in the BitmapStartAlign
member of the GA_mode structure, and the srcPitch value must be padded to
multiples of the BitmapStridePad member of the GA_modeInfo structure. The results of
this routine are undefined if the video memory regions overlap.

Info

Note that the srcLeft and srcTop coordinates define an offset within the source bitmap to
be copied, so it will copy only a portion of an offscreen bitmap. This is useful for storing
multiple images in a single offscreen bitmap, or for handling the case of software

SciTech SNAP, Graphics Architecture 273

Graphics Device Driver Reference

clipping offscreen bitmaps if the destination lies outside of the software clip rectangle
for the destination buffer.

This version is different to the standard BitBlt function in that the source bitmap to be
copied can be non-conforming, and can have a different logical scanline width to the
destination bitmap. This allows the bitmaps to be stored contiguously in offscreen video
memory, rather than requiring the offscreen video memory to be divided up into
rectangular regions, resulting in more efficient use of available offscreen memory for
bitmap storage.

Note: The value of srcOfs must be aligned to the boundary specified in the BitmapStartAlign
member of the GA_modeInfo structure, and the dstPitch value must be padded to
multiples of the BitmapStridePad member of the GA_ structure. modeInfo

Note: Although you can achieve the same effect of this routine using the generic BitBltFxLin
function, this function is provided separately as it is usually a workhorse function for
sprite based game applications and needs to be as efficient as possible.

See Also
SrcTransBlt ys ransBlt lt, SrcTransBltS , SrcTransBltBM, DstT , BitB , BitBltFx

SciTech SNAP, Graphics Architecture 274

Graphics Device Driver Reference

SrcTransBltSys

Copy a block of system memory to a location in video memory with source
transparency.

Declaration
void NAPI GA_2DRenderFuncs::SrcTransBltSys(
 void *srcAddr,
 N_int32 srcPitch,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 width,
 N_int32 height,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 mix,
 GA_color transparent,
 N_int32 flipY)

Prototype In
snap/graphics.h

Parameters
srcAddr Address of source bitmap in system memory
srcPitch Pitch of source bitmap in bytes
srcLeft Left coordinate within source bitmap to copy
srcTop Top coordinate within source bitmap to copy
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
mix Mix code for the copy (GA_mixCodesType)
transparent Transparent color value
flipY True if the image should be flipped vertically

Description
This routine will copy a bitmap from system memory with a starting address of srcAddr
to the destination rectangle (dstLeft, dstTop, dstLeft+width-1, dstTop+height-1) with the
specified mix and with source transparency. The mix code will be used to combine the
source bitmap data with the pixels in the destination bitmap. The transparent color
passed will be used to /mask out/ pixels in the source bitmap from being written to the
destination area. Where a pixel in the source bitmap matches the transparent color, the
pixel will not be written to the destination bitmap.

Note that the srcLeft and srcTop coordinates define an offset within the source bitmap to
be copied, so it will copy only a portion of the memory bitmap.

Note: Although you can achieve the same effect of this routine using the generic BitBltFxSys
function, this function is provided separately as it is usually a workhorse function for
sprite based game applications and needs to be as efficient as possible.

SciTech SNAP, Graphics Architecture 275

Graphics Device Driver Reference

See Also
SrcTransBlt in ransBlt lt, SrcTransBltL , SrcTransBltBM, DstT , BitB , BitBltFx

SciTech SNAP, Graphics Architecture 276

Graphics Device Driver Reference

StretchBlt

Copy a block of video memory to another location in video memory with stretching or
shrinking.

Declaration
void NAPI GA_2DRenderFuncs::StretchBlt(
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 srcWidth,
 N_int32 srcHeight,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 dstWidth,
 N_int32 dstHeight,
 N_int32 doClip,
 N_int32 clipLeft,
 N_int32 clipTop,
 N_int32 clipRight,
 N_int32 clipBottom,
 N_int32 mix)

Prototype In
snap/graphics.h

Parameters
srcLeft Left coordinate of the source rectangle to copy
srcTop Top coordinate of the source rectangle to copy
srcWidth Width of the source rectangle in pixels
srcHeight Height of the source rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
dstWidth Width of the destination rectangle in pixels
dstHeight Height of the destination rectangle in scanlines
doClip True if the blit should be clipped, false if not
clipLeft Left coordinate for clip rectangle (inclusive)
clipTop Top coordinate for clip rectangle (inclusive)
clipRight Right coordinate for clip rectangle (exclusive)
clipBottom Bottom coordinate for clip rectangle (exclusive)
mix Mix code for the copy (GA_mixCodesType)

Description
This function copies a rectangular region of video memory from one location to another
with either stretching or shrinking. This routine will copy the rectangular region of
video memory from (srcLeft, srcTop, srcLeft+srcWidth-1, srcTop+srcHeight-1) to
(dstLeft, dstTop, dstLeft+dstWidth-1, dstTop+dstHeight-1) within video memory. Note
that the source and destination rectangle dimensions may be different in, which is the
case for doing a copy with bitmap stretching or shrinking. The results of this routine are
undefined if the video memory regions overlap.

SciTech SNAP, Graphics Architecture 277

Graphics Device Driver Reference

If the doClip parameter is true, then the output of the stretch function will be clipped
against the passed in destination clip rectangle.

See Also
StretchBltLin, StretchBltSys, StretchBltBM, SrcTransBlt, DstTransBlt, BitBlt

SciTech SNAP, Graphics Architecture 278

Graphics Device Driver Reference

StretchBltBM

Copy a block of system memory to another location in video memory with stretching or
shrinking and bus mastering.

Declaration
void NAPI GA_2DRenderFuncs::StretchBltBM(
 void *srcAddr,
 N_int32 srcPhysAddr,
 N_int32 srcPitch,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 srcWidth,
 N_int32 srcHeight,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 dstWidth,
 N_int32 dstHeight,
 N_int32 doClip,
 N_int32 clipLeft,
 N_int32 clipTop,
 N_int32 clipRight,
 N_int32 clipBottom,
 N_int32 mix)

Prototype In
snap/graphics.h

Parameters
srcAddr Address of source bitmap in system memory
srcPhysAddr Physical address of source bitmap in system memory
srcPitch Pitch of source bitmap in bytes
srcLeft Left coordinate of the source rectangle to copy
srcTop Top coordinate of the source rectangle to copy
srcWidth Width of the source rectangle in pixels
srcHeight Height of the source rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
dstWidth Width of the destination rectangle in pixels
dstHeight Height of the destination rectangle in scanlines
doClip True if the blit should be clipped, false if not
clipLeft Left coordinate for clip rectangle (inclusive)
clipTop Top coordinate for clip rectangle (inclusive)
clipRight Right coordinate for clip rectangle (exclusive)
clipBottom Bottom coordinate for clip rectangle (exclusive)
mix Mix code for the copy (GA_mixCodesType)

Description
This function copies a bitmap from system memory with a physical starting address of
srcPhysAddr to video memory with either stretching or shrinking. This routine will
copy the rectangular region of video memory from (srcLeft, srcTop, srcLeft+srcWidth-1,
srcTop+srcHeight-1) to (dstLeft, dstTop, dstLeft+dstWidth-1, dstTop+dstHeight-1)

SciTech SNAP, Graphics Architecture 279

Graphics Device Driver Reference

within video memory. Note that the source and destination rectangle dimensions may
be different in, which is the case for doing a copy with bitmap stretching or shrinking.
The srcPhysAddr value points to the start of the bitmap data in system memory as a
physical memory address, not a linear memory address that the application software
normally deals with. It is up to the calling application to use the necessary OS services to
allocate a block of contiguous physical memory for the bitmap data, and to obtain the
physical memory address to be passed into this function. Note that the source and
destination rectangle dimensions may be different in, which is the case for doing a copy
with bitmap stretching or shrinking.

This version is different to the StretchBltSys function in that the bitmap data is copied
using Bus Mastering by the graphics accelerator, which allows this function to return
before the copy has completed and the accelerator will complete the copy in the
background with a DMA Bus Master operation. If this hardware supports Bus Mastering
and this function is available, it will usually be the fastest method to copy a block of
system memory to video memory.

Note that the srcLeft and srcTop coordinates define an offset within the source bitmap to
be copied, so it will copy only a portion of the memory bitmap.

If the doClip parameter is true, then the output of the stretch function will be clipped
against the passed in destination clip rectangle.

See Also
StretchBlt sBlt, StretchBltLin, StretchBltSys, SrcTransBlt, DstTran , BitBlt

SciTech SNAP, Graphics Architecture 280

Graphics Device Driver Reference

StretchBltLin

Copy a linear block of video memory to another location in video memory with
stretching or shrinking.

Declaration
void NAPI GA_2DRenderFuncs::StretchBltLin(
 N_int32 srcOfs,
 N_int32 srcPitch,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 srcWidth,
 N_int32 srcHeight,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 dstWidth,
 N_int32 dstHeight,
 N_int32 doClip,
 N_int32 clipLeft,
 N_int32 clipTop,
 N_int32 clipRight,
 N_int32 clipBottom,
 N_int32 mix)

Prototype In
snap/graphics.h

Parameters
srcOfs Offset of source bitmap in video memory
srcPitch Pitch of source bitmap in bytes
srcLeft Left coordinate of the source rectangle to copy
srcTop Top coordinate of the source rectangle to copy
srcWidth Width of the source rectangle in pixels
srcHeight Height of the source rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
dstWidth Width of the destination rectangle in pixels
dstHeight Height of the destination rectangle in scanlines
doClip True if the blit should be clipped, false if not
clipLeft Left coordinate for clip rectangle (inclusive)
clipTop Top coordinate for clip rectangle (inclusive)
clipRight Right coordinate for clip rectangle (exclusive)
clipBottom Bottom coordinate for clip rectangle (exclusive)
mix Mix code for the copy (GA_mixCodesType)

Description
This function copies a linear region of video memory from one location to another with
either stretching or shrinking. Note that the value of srcOfs must be aligned to the
boundary specified in the BitmapStartAlign member of the GA_modeInfo structure, and
the srcPitch value must be padded to multiples of the BitmapStridePad member of the

 structure. This routine will copy the rectangular region of video memory GA_modeInfo

SciTech SNAP, Graphics Architecture 281

Graphics Device Driver Reference

from (srcLeft, srcTop, srcLeft+srcWidth-1, srcTop+srcHeight-1) to (dstLeft, dstTop,
dstLeft+dstWidth-1, dstTop+dstHeight-1) within video memory. Note that the source
and destination rectangle dimensions may be different in, which is the case for doing a
copy with bitmap stretching or shrinking. The results of this routine are undefined if the
video memory regions overlap.

Note that the srcLeft and srcTop coordinates define an offset within the source bitmap to
be copied, so it will copy only a portion of an offscreen bitmap. This is useful for storing
multiple images in a single offscreen bitmap, or for handling the case of software
clipping offscreen bitmaps if the destination lies outside of the software clip rectangle
for the destination buffer.

This version is different to the standard BitBltFx function in that the source bitmap to be
copied can be non-conforming, and can have a different logical scanline width to the
destination bitmap. This allows the bitmaps to be stored contiguously in offscreen video
memory, rather than requiring the offscreen video memory to be divided up into
rectangular regions, resulting in more efficient use of available offscreen memory for
bitmap storage.

If the doClip parameter is true, then the output of the stretch function will be clipped
against the passed in destination clip rectangle.

Note: The value of srcOfs must be aligned to the boundary specified in the BitmapStartAlign
member of the GA_modeInfo structure, and the dstPitch value must be padded to
multiples of the BitmapStridePad member of the GA_ structure. modeInfo

See Also
StretchBlt, StretchBltSys, StretchBltBM, SrcTransBlt, DstTransBlt, BitBlt

SciTech SNAP, Graphics Architecture 282

Graphics Device Driver Reference

StretchBltSys

Copy a block of system memory to another location in video memory with stretching or
shrinking.

Declaration
void NAPI GA_2DRenderFuncs::StretchBltSys(
 void *srcAddr,
 N_int32 srcPitch,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 srcWidth,
 N_int32 srcHeight,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 dstWidth,
 N_int32 dstHeight,
 N_int32 doClip,
 N_int32 clipLeft,
 N_int32 clipTop,
 N_int32 clipRight,
 N_int32 clipBottom,
 N_int32 mix,
 N_int32 flipY)

Prototype In
snap/graphics.h

Parameters
srcAddr Address of source bitmap in system memory
srcPitch Pitch of source bitmap in bytes
srcLeft Left coordinate of the source rectangle to copy
srcTop Top coordinate of the source rectangle to copy
srcWidth Width of the source rectangle in pixels
srcHeight Height of the source rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
dstWidth Width of the destination rectangle in pixels
dstHeight Height of the destination rectangle in scanlines
doClip True if the blit should be clipped, false if not
clipLeft Left coordinate for clip rectangle (inclusive)
clipTop Top coordinate for clip rectangle (inclusive)
clipRight Right coordinate for clip rectangle (exclusive)
clipBottom Bottom coordinate for clip rectangle (exclusive)
mix Mix code for the copy (GA_mixCodesType)
flipY True if the image should be flipped vertically

Description
This function copies a linear region of video memory from one location to another with
either stretching or shrinking. This routine will copy the rectangular region of video
memory from (srcLeft, srcTop, srcLeft+srcWidth-1, srcTop+srcHeight-1) to (dstLeft,
dstTop, dstLeft+dstWidth-1, dstTop+dstHeight-1) within video memory. Note that the

SciTech SNAP, Graphics Architecture 283

Graphics Device Driver Reference

source and destination rectangle dimensions may be different in, which is the case for
doing a copy with bitmap stretching or shrinking. The results of this routine are
undefined if the video memory regions overlap.

Note that the srcLeft and srcTop coordinates define an offset within the source bitmap to
be copied, so it will copy only a portion of the memory bitmap.

If the doClip parameter is true, then the output of the stretch function will be clipped
against the passed in destination clip rectangle.

See Also
StretchBlt Blt sBlt, StretchBltLin, StretchBltBM, SrcTrans , DstTran , BitBlt

SciTech SNAP, Graphics Architecture 284

Graphics Device Driver Reference

UpdateScreen

Update the screen from the shadow buffer for the specified rectangle

Declaration
void NAPI GA_2DRenderFuncs::UpdateScreen(
 N_int32 left,
 N_int32 top,
 N_int32 width,
 N_int32 height)

Prototype In
snap/graphics.h

Parameters
left Left coordinate of screen to update
top Top coordinate of screen to update
width Width of the rectangle in pixels
height Height of the rectangle in scanlines

Description
This function is used to update the screen from a shadow buffer if the application or
shell driver did any custom drawing to the shadow buffer without using the SNAP
driver functions. If the mode is using a shadow buffer (usually only for 4bpp modes and
8bpp banked modes) this function will be implemented and must be used, otherwise the
function will be NULL.

This fuction may also be used by rotation, flipped and other geometry changing filter
drivers to ensure that any custom drawing is properly managed on the hardware
framebuffer.

SciTech SNAP, Graphics Architecture 285

Graphics Device Driver Reference

GA_2DStateFuncs

Prototype In
snap/graphics.h

Description
Function group containing all the device driver functions related to managing the
hardware 2D graphics accelerator state. This group of functions does not contain any
functions that do any drawing on the screen, just state management.

Generally applications or shell drivers should request this block of functions from the 2d
reference rasteriser library, not directly from the graphics accelerator. This will allows
the library to fill in all rendering functions with software rendering as necessary
automatically.

Note: Be sure to fill in the dwSize member of this structure when you call GA_queryFunctions
to the correct size of the structure at compile time!

SciTech SNAP, Graphics Architecture 286

Graphics Device Driver Reference

BuildTranslateVector

Build a color palette translation vector

Declaration
void NAPI GA_2DStateFuncs::BuildTranslateVector(
 GA_color *translate,
 GA_palette *dstPal,
 GA_palette *srcPal,
 int srcColors)

Prototype In
snap/graphics.h

Parameters
translate Place to store resulting translate vector
dstPal Destination palette to map to
srcPal Source palette to map from
srcColors Number of colors in the source palette to map

Description
This function builds a color palette translation vector and returns it. For color index
modes (<= 8bpp), the source palette values are mapped onto the destination palette
values, and the resulting translation vector will be an array of 32-bit color palette index
values. To find the final color for a color value, take the source color index value and
dereference it via the translation table to get the resulting color index value.

For 15bpp and higher RGB display modes, the destination palette parameter is ignored
and the resulting translaction vector will be a 32-bit array of packed color values that
represent the source palette entries. Ie: for 15bpp modes, the resulting vector will contain
32-bit values between 0 and 0x7FFF that represent the packed color values in 5:5:5
format. Hence converting paletted bitmap data to the destination pixel format is simply
a matter of looking up the entry in the translation vector and using that to store the
resulting value in the framebuffer.

This function is mostly intended for applications and shell drivers that know in advance
that a number of bitmaps will be translated, so can create the color translation vector
once and then reuse it for all bitmaps.

SciTech SNAP, Graphics Architecture 287

Graphics Device Driver Reference

DisableDirectAccess

Disables direct access to display memory.

Declaration
void NAPI GA_2DStateFuncs::DisableDirectAccess(void)

Prototype In
snap/graphics.h

Description
This function disables direct framebuffer access and turns on the hardware accelerator
again. The primary purpose of this function is to correctly arbitrate video memory access
between the accelerator and the application. You must call this function before you
perform any accelerated rendering again if the EnableDir function pointer was
not NULL.

ectAccess

er

EnableDirectAccess

Note that if you are using the buffer manager functions, you should avoid using this
function but instead use the LockBuff and UnlockBuffer functions to hide the complexity
of managing offscreen memory blocks.

See Also
, WaitTillIdle, UnlockBuffer

SciTech SNAP, Graphics Architecture 288

Graphics Device Driver Reference

EnableDirectAccess

Enables direct access to framebuffer memory.

Declaration
void NAPI GA_2DStateFuncs::EnableDirectAccess(void)

Prototype In
snap/graphics.h

Description
This function disables the accelerator and turns on direct framebuffer access. The
primary purpose of this function is to correctly arbitrate video memory access between
the accelerator and the CPU. You must call this function before you perform any direct
rendering to the video memory if the function pointer for this function is not NULL. If
the function pointer is NULL, then the controller does not need to arbitrate access and
this function is not necessary (instead simply call WaitTillIdle before accessing the
framebuffer memory).

Note that if you are using the buffer manager functions, you should avoid using this
function but instead use the LockBuff and UnlockBuffer functions to hide the complexity
of managing offscreen memory blocks.

er

Note: This function does an implicit WaitTillIdle when it is called to ensure that the graphics
accelerator has finished all current rendering operations before enabling direct access to
display memory.

See Also
DisableDirectAccess, WaitTillIdle, LockBuffer

SciTech SNAP, Graphics Architecture 289

Graphics Device Driver Reference

IsIdle

Determines if the graphics accelerator is idle.

Declaration
N_int32 NAPI GA_2DStateFuncs::IsIdle(void)

Prototype In
snap/graphics.h

Return Value
not 0 if the accelerator is idle, 0 if not.

Description
This function is the similar to the WaitTillIdle function, however it does not wait for the
engine to become idle but instead returns immediately with the current status.

See Also
WaitTillIdle ectAccess ableDirectAccess, EnableDir , Dis

SciTech SNAP, Graphics Architecture 290

Graphics Device Driver Reference

Set8x8ColorPattern

Download an 8x8 color pattern to the driver.

Declaration
void NAPI GA_2DStateFuncs::Set8x8ColorPattern(
 N_int32 index,
 GA_colorPattern *pattern)

Prototype In
snap/graphics.h

Parameters
index Index of the pattern to download
pattern Pointer to pattern data to download

Description
This downloads one of 8, 8x8 color patterns for all subsequent color pattern filled
functions. The 8x8 color fill pattern is used for rectangle and scanline filling, where the
pattern is X and Y coordinate aligned with the left edge and top edge of the display.
Thus the colors in the pattern that applies to a specific pixel in the scanline is determine
by the pixel's X starting at the left. Hence pixel 0 corresponds to color 0, pixel 1 = color 1
etc. It is the responsibility of the calling application to rotate the pattern before calling
this routine if it is desired that the pattern be aligned to a different starting coordinate
(such as with Windows Bitmaps and setting the bitmap origin). The color pattern is
represented as an 8x8 array of packed pixel data. In 8bpp modes there is 8 bytes per line,
for 16bpp modes there are 16bytes per line, for 24bpp modes there are 24bytes per line
and for 32bpp modes there are 32 bytes per line. Hence the size of the pattern data is
different depending on the color depth currently active. Each pixel color value is packed
for the appropriate display mode.

Note: 8 cached patterns are supported because some hardware supports caching multiple
patterns in offscreen video memory for maximum performance. In cases where the
hardware only supports a single hardware pattern, the driver is responsible for caching the
pattern data internally and downloading it as efficiently as possible to the display
hardware.

See Also
Set8x8MonoPattern
GA_2DRenderFuncs ColorPattScanList wColorPattRect
DrawColorPattTrap

, Use8x8MonoPattern, Use8x8ColorPattern,
::DrawColorPattScan, Draw , Dra ,

SciTech SNAP, Graphics Architecture 291

Graphics Device Driver Reference

Set8x8MonoPattern

Download an 8x8 monochrome pattern to the driver.

Declaration
void NAPI GA_2DStateFuncs::Set8x8MonoPattern(
 N_int32 index,
 GA_pattern *pattern)

Prototype In
snap/graphics.h

Parameters
index Index of the pattern to download
pattern Pointer to pattern data to download

Description
This downloads one of 8, 8x8 monochrome patterns for all subsequent monochrome
pattern filled functions. The 8x8 monochrome fill pattern is used for rectangle and
scanline filling, where the pattern is X and Y coordinate aligned with the left edge and
top edge of the display. In the bitmap pattern, pixel 0 corresponds to bit 7 in byte 0, pixel
1 = bit 6 in byte 0, ... pixel 8 = bit 7 in byte 1 etc. It is the responsibility of the calling
application to rotate the pattern before calling this routine if it is desired that the pattern
be aligned to a different starting coordinate (such as with Windows Bitmaps and setting
the bitmap origin). The bitmap pattern is passed as a packed array of 8 bytes.

Note: 8 cached patterns are supported because some hardware supports caching multiple
patterns in offscreen video memory for maximum performance. In cases where the
hardware only supports a single hardware pattern, the driver is responsible for caching the
pattern data internally and downloading it as efficiently as possible to the display
hardware.

See Also
Use8x8MonoPattern x8ColorPattern
GA_2DRenderFuncs attRect

, Set8 , Use8x8ColorPattern,
::DrawPattScan, DrawPattScanList, DrawP , DrawPattTrap

SciTech SNAP, Graphics Architecture 292

Graphics Device Driver Reference

SetAlphaValue

Set the constant alpha value for blending operations.

Declaration
void NAPI GA_2DStateFuncs::SetAlphaValue(
 N_uint8 alpha)

Prototype In
snap/graphics.h

Parameters
alpha New constant alpha value to make active

Description
This function sets the constant alpha value for subsequent drawing operations. The
constant alpha value is used when either the source or destination blending functions
include constant alpha, otherwise this value is ignored.

Note: Not all hardware supports this function, and if the hardware does not support it this
function will be NULL.

See Also
SetBlendFunc

SciTech SNAP, Graphics Architecture 293

Graphics Device Driver Reference

SetBackColor

Set the background color for subsequent rendering operations.

Declaration
void NAPI GA_2DStateFuncs::SetBackColor(
 GA_color color)

Prototype In
snap/graphics.h

Parameters
color New background color to set

Description
This function sets the hardware color for subsequent accelerated rendering primitives.
For solid primitives such as DrawRect only the foreground color is used. For patterns
primitives such as DrawPattRect and DrawStippleLine both the foreground and
background colors are used.

See Also
SetForeColor rn, SetMix, Set8x8MonoPatte , Set8x8ColorPattern

SciTech SNAP, Graphics Architecture 294

Graphics Device Driver Reference

SetBlendFunc

Set the source and destination blending functions for subsequent drawing operations.

Declaration
void NAPI GA_2DStateFuncs::SetBlendFunc(
 N_int32 srcBlendFunc,
 N_int32 dstBlendFunc)

Prototype In
snap/graphics.h

Parameters
srcBlendFunc New source blending function (GA_blendFuncTy) pe

ncType

GA_blendFuncType

dstBlendFunc New destination blending function (GA_blendFu)

Description
This function sets the source and destination blending function for subseqeunt drawing
operations. The supported source and destination blending operations are defined in the

 enumeration, and the final result is a combination of the source and
destination blending functions. Blending is disabled by calling this function with
srcBlendFunc or dstBlendFunc set to gaBlendNone. Before any blending will take effect,
both the source and the destination blending functions must be enabled.

Note: Not all hardware supports this function, and if the hardware does not support it this
function will be NULL.

See Also
SetAlphaValue

SciTech SNAP, Graphics Architecture 295

Graphics Device Driver Reference

SetDrawBuffer

Sets a display buffer as the active drawing buffer.

Declaration
N_int32 NAPI GA_2DStateFuncs::SetDrawBuffer(
 GA_buffer *drawBuf)

Prototype In
snap/graphics.h

Parameters
drawBuf Buffer to make the active drawing buffer.

Return Value
0 on success, -1 on failure

Description
This function allows the application to make a display memory buffer the active
rendering buffer for all subsequent drawing commands. The display memory drawing
buffer may be a region of memory with non-conforming dimensions compared to the
main display mode (ie: a 320x240 offscreen buffer with an 800x600 display mode).
However if the hardware cannot support non-conforming regions, this function will fail.
It may also fail if you request a drawing buffer where the offset is not aligned on a
scanline boundary for hardware that does not support rendering to arbitrary offscreen
buffers.

Note also that some hardware has restrictions on the alignment of both the starting
offset in display memory and the pitch in display memory. The BitmapStartAlign and
BitmapStridePad fields of the GA_modeInfo structure indicate the alignment
requirements, so you must ensure that the Offset and Stride members of the GA_bu
structure are correctly aligned based on these values (if not this function will fail). Some
hardware may also require the use of the AlignLi command as well.

ffer

nearBuffer

_bufferFuncs

In order to avoid the complexity of managing offscreen memory, application
programmers and shell driver programmers should use the buffer manager functions
instead (GA). These functions provide a more abstract interface to offscreen
video memory, and will automatically take care of managing all the details of surface
allocation for you.

Note: This function should never fail if the starting address is aligned to a scanline boundary
and the scanline width is the same as the logical display pitch for the display mode.

See Also
GA_bufferFuncs, SetDrawBuffer

SciTech SNAP, Graphics Architecture 296

Graphics Device Driver Reference

SetForeColor

Set the foreground color for subsequent rendering operations.

Declaration
void NAPI GA_2DStateFuncs::SetForeColor(
 GA_color color)

Prototype In
snap/graphics.h

Parameters
color New foreground color to set

Description
This function sets the hardware foreground color for subsequent accelerated rendering
primitives. For solid primitives such as DrawRect only the foreground color is used. For
patterns primitives such as DrawPattRect and DrawStippleLine both the foreground and
background colors are used.

See Also
SetBackColor, SetMix, Set8x8MonoPattern, Set8x8ColorPattern

SciTech SNAP, Graphics Architecture 297

Graphics Device Driver Reference

SetLineStipple

Sets the current 16-bit line stipple pattern.

Declaration
void NAPI GA_2DStateFuncs::SetLineStipple(
 GA_stipple stipple)

Prototype In
snap/graphics.h

Parameters
stipple New 16-bit line stipple pattern to set

Description
This function sets up a 16-bit line stipple for all subsequent stippled line drawing
functions. In the stipple, pixel 0 corresponds to bit 0, pixel 1 = bit 1, ... pixel 15 = bit 15
etc. If the stippled line is drawn in transparent mode, where a bit is 0 in the stipple
pattern the destination pixel remains untouched. If the stipple line is drawin in opaque
mode, where a bit is 0 in the stipple pattern the destination pixel is drawn in the
background color. In all cases where a bit in the stipple pattern is 1, the pixel is drawn in
the foreground color.

Note: When a new stipple pattern is downloaded, the line stipple count is reset back to 0.

See Also
SetLineStippleCount neStyle wStippleLineInt resenhamStippleLine, SetLi , Dra , DrawB

SciTech SNAP, Graphics Architecture 298

Graphics Device Driver Reference

SetLineStippleCount

Set the 32-bit line stipple count

Declaration
void NAPI GA_2DStateFuncs::SetLineStippleCount(
 N_uint32 count)

Prototype In
snap/graphics.h

Parameters
count New 32-bit line stipple count

Description
This function sets the line stipple count for stippled line drawing. When a line is drawn,
every pixel that is drawn in the line increments the stipple counter by 1. The stipple
counter modules 16 is used to determine which bit in the stipple pattern should be used
for the next pixel drawn in the line, and because the driver maintains this stipple count
across stippled line drawing functions, it allows a single stipple pattern to be correctly
applied to a number of connected line segments. This function allows the user
application to preset the stipple count to a specified value before drawing the next
stippled line.

See Also
SetLineStipple wStippleLineInt esenhamStippleLine, SetLineStyle, Dra , DrawBr

SciTech SNAP, Graphics Architecture 299

Graphics Device Driver Reference

SetLineStyle

Set the OS/2 style line style parameters for drawing patterned lines

Declaration
void NAPI GA_2DStateFuncs::SetLineStyle(
 N_uint32 styleMask,
 N_uint32 styleStep,
 N_uint32 styleValue)

Prototype In
snap/graphics.h

Parameters
styleMask 32-bit style mask for styled lines
styleStep 8-bit value added to styleValue for each major pixel
styleValue The style value for the first pixel in the line

Description
This function sets up the parameters for drawing 32-bit OS/2 style styled lines for all
subsequent styled line drawing functions. In the styleMask, pixel 0 corresponds to bit 0,
pixel 1 = bit 1, ... pixel 31 = bit 31 etc. If the styled line is drawn in transparent mode,
where a bit is 0 in the styleMask the destination pixel remains untouched. If the styled
line is drawn in opaque mode, where a bit is 0 in the styleMask the destination pixel is
drawn in the background color. In all cases where a bit in the styleMask pattern is 1, the
pixel is drawn in the foreground color.

The styleValue passed in is composed of an error value and a mask position as follows:

|==|
| high word | 3 bits | 5 bits | 8 bits |
|==|
| not used | not used | mask pos | error value |
|==|

The error value determines the error value at the first pixel in the line. The mask position
is an index into the styleMask to determine how the pixel should be drawn as outlined
above.

See Also
SetLineStipple Int resenhamStyleLine, SetLineStippleCount, DrawStyleLine , DrawB

SciTech SNAP, Graphics Architecture 300

Graphics Device Driver Reference

SetMix

Set the mix code for subsequent rendering operations.

Declaration
N_int32 NAPI GA_2DStateFuncs::SetMix(
 N_int32 mix)

Prototype In
snap/graphics.h

Parameters
mix New mix code to set (GA_mixCodesType)

Return Value
True on success, false if mix is not supported.

Description
This function sets the hardware mix operation for subsequent accelerated rendering
primitives. The mix does not change that often, and is usually only set once for a range
of rendering primitives, so it is set here via a state function rather than being passed to
each rendering functions (unlike the colors which change constantly). The mix modes
are defined in the GA_mixCodesType enumeration.

Note: If the hardware does not support a particular mix this function may return false. It is up
to the calling code to detect this and properly fall back on software rendering to handle this
particular mix (the 2d reference rasteriser does this automatically).

See Also
SetForeColor or, SetBackCol , Set8x8MonoPattern, Set8x8ColorPattern

SciTech SNAP, Graphics Architecture 301

Graphics Device Driver Reference

SetPlaneMask

Set the hardware plane mask for subsequent drawing operations.

Declaration
void NAPI GA_2DStateFuncs::SetPlaneMask(
 N_uint32 mask)

Prototype In
snap/graphics.h

Parameters
mask New plane mask to make active

Description
This function sets the hardware plane mask for the hardware, which is used to mask out
specific bits from being affected during writes to the framebuffer. The mask passed in
should be a packed color value for the currently active display mode.

Note: Not all hardware supports this function, and if the hardware does not support it this
function will be NULL.

SciTech SNAP, Graphics Architecture 302

Graphics Device Driver Reference

Use8x8ColorPattern

Selects one of the 8x8 color patterns for subsequent rendering operations.

Declaration
void NAPI GA_2DStateFuncs::Use8x8ColorPattern(
 N_int32 index)

Prototype In
snap/graphics.h

Parameters
index Index of the 8x8 color pattern to make active

Description
This function selects one of the 8, 8x8 color patterns to be used for all subsequent color
pattern filled functions.

See Also
Set8x8MonoPattern
GA_2DRenderFuncs ColorPattScanList wColorPattRect
DrawColorPattTrap

, Use8x8MonoPattern, Set8x8ColorPattern,
::DrawColorPattScan, Draw , Dra ,

SciTech SNAP, Graphics Architecture 303

Graphics Device Driver Reference

Use8x8MonoPattern

Selects one of the 8x8 monochrome patterns for subsequent rendering operations.

Declaration
void NAPI GA_2DStateFuncs::Use8x8MonoPattern(
 N_int32 index)

Prototype In
snap/graphics.h

Parameters
index Index of the 8x8 mono pattern to make active

Description
This function selects one of the 8, 8x8 monochrome patterns to be used for all
subsequent monochrome pattern filled functions. This function enables the monochrome
pattern to be used for opaque mono pattern fills. This means that where a bit is 0 in the
bitmap pattern the destination pixel is drawn in the background color, and where a bit is
1 in the bitmap pattern the destination pixel is drawn in the foreground color.

See Also
Use8x8TransMonoPattern oPattern
GA_2DRenderFuncs attRect

, Set8x8Mon , Set8x8ColorPattern, Use8x8ColorPattern,
::DrawPattScan, DrawPattScanList, DrawP , DrawPattTrap

SciTech SNAP, Graphics Architecture 304

Graphics Device Driver Reference

Use8x8TransColorPattern

Selects one of the 8x8 color patterns for subsequent rendering operations.

Declaration
void NAPI GA_2DStateFuncs::Use8x8TransColorPattern(
 N_int32 index,
 GA_color transparent)

Prototype In
snap/graphics.h

Parameters
index Index of the 8x8 color pattern to make active
transparent Transparent color for the pattern fill

Description
This function selects one of the 8, 8x8 color patterns to be used for all subsequent color
pattern filled functions. This verison is similar to the regular Use8x8ColorPattern
function, however it enables transparency for the color pattern. Where a pixel in the
pattern is equal to the transparent color, the destination pixel will remain untouched,
otherwise the destination pixel will take on the color of the pixel in the bitmap pattern.

Note: Some hardware may not support transparent color pattern fills, in which case this
function will be a NULL pointer.

See Also
Set8x8MonoPattern
GA_2DRenderFuncs ColorPattScanList wColorPattRect
DrawColorPattTrap

, Use8x8MonoPattern, Set8x8ColorPattern,
::DrawColorPattScan, Draw , Dra ,

SciTech SNAP, Graphics Architecture 305

Graphics Device Driver Reference

Use8x8TransMonoPattern

Selects one of the 8x8 monochrome patterns for subsequent rendering operations.

Declaration
void NAPI GA_2DStateFuncs::Use8x8TransMonoPattern(
 N_int32 index)

Prototype In
snap/graphics.h

Parameters
index Index of the 8x8 mono pattern to make active

Description
This function selects one of the 8, 8x8 monochrome patterns to be used for all
subsequent monochrome pattern filled functions. This function enables the monochrome
pattern to be used for transparent mono pattern fills. This means that where a bit is 0 in
the bitmap pattern the destination pixel remains untouched, and where a bit is 1 in the
bitmap pattern the destination pixel is drawn in the foreground color.

Note: Some hardware may not support transparent mono pattern fills, in which case this
function will be a NULL pointer.

See Also
Use8x8MonoPattern x8MonoPattern
GA_2DRenderFuncs attRect

, Set8 , Set8x8ColorPattern, Use8x8ColorPattern,
::DrawPattScan, DrawPattScanList, DrawP , DrawPattTrap

SciTech SNAP, Graphics Architecture 306

Graphics Device Driver Reference

WaitTillIdle

Waits until the graphics accelerator is idle.

Declaration
void NAPI GA_2DStateFuncs::WaitTillIdle(void)

Prototype In
snap/graphics.h

Description
This function waits until the hardware accelerator has completed all currently queued
rendering operations. The primary purpose of this function is to provide the application
with the ability to ensure all rendering is complete, before swapping display pages when
doing double buffering, or before directly accessing the framebuffer memory.

Note: This function is required to wait for the entire graphics engine to be idle, including
waiting until any pending DMA or bus master operations have completed.

See Also
EnableDirectAccess ableDirectAccess, Dis , IsIdle

SciTech SNAP, Graphics Architecture 307

Graphics Device Driver Reference

GA_AccelFlagsType

Declaration
typedef enum {
 gaAccelType_Custom = 0,
 gaAccelType_Full = 1,
 gaAccelType_Most = 2,
 gaAccelType_Basic = 3,
 gaAccelType_None = 4
 } GA_AccelFlagsType

Prototype In
snap/graphics.h

Description
Definitions for values stored in the accelType member of the GA_Options structure.
These flags define the different values for this particular option which is multi-state and
not just an on/off option. This option is designed to be used as a fallback measure in the
field to disable problem functions in a driver that an end user might be experiencing.

The gaAccelType_Custom value indicates that the user has manually overridden
specific hardware acceleration options rather than using the four pre-defined settings.

The gaAccelType_Full value indicates that full hardware acceleration should be used,
and is always the default option for all drivers.

The gaAccelType_Most value indicates that most acceleration functions should be used
in the driver. This basically disables support for hardware mouse cursor and hardware
video overlays functionality.

The gaAccelType_Basic value indicates that only basic acceleration functions should be
used in the driver. Basic acceleration includes solid fills, mono and color pattern fills and
screen to screen blits. All other functions are disabled.

gaAccelType_None value indicats that no hardware acceleration functions should be
used in the driver.

Members
gaAccelType_Custom Custom hardware acceleration
gaAccelType_Full Full hardware acceleration (default)
gaAccelType_Most Most hardware acceleration
gaAccelType_Basic Basic hardware acceleration
gaAccelType_None No hardware acceleration

SciTech SNAP, Graphics Architecture 308

Graphics Device Driver Reference

GA_AttributeExtFlagsType

Declaration
typedef enum {
 gaIsPanningMode = 0x00000001,
 gaNoRefreshCtrl = 0x00000002
 } GA_AttributeExtFlagsType

Prototype In
snap/graphics.h

Description
Flags for the AttributesExt member of the GA_mo structure and in the
AttributesExt member of the main GA_devCtx device context block structure. These flags
define the hardware capabilities of the particular device or graphics mode.

deInfo

vCtx

The gaIsPannedMode flag is used to determine if the mode is a virtual hardware panned
display mode or if the mode is a non-panned display mode. This flag is only ever set if
you call the GetVideoModeInfoExt or GetCustomVideoModeInfoExt functions, as the
original versions of these functions assume non panning modes will be reported. If the
mode is a hardware panned mode for the requested output device, it means that if the
mode is set while that output device is active hardware panning will be enabled. It is
then up to the shell driver to interface with the mouse driver to implement the actual
hardware panning.

The gaNoRefreshCtrl flag indicates that the device has no refresh control. This will only
be reported in the GA_de variable, and is only so that the VBE/Core fallback driver
can indicate whether refresh control is available or not.

Members
gaIsPanningMode Mode is a virtual hardware panning display mode
gaNoRefreshCtrl Device has no refresh rate control

SciTech SNAP, Graphics Architecture 309

Graphics Device Driver Reference

GA_AttributeFlagsType

Declaration
typedef enum {
 gaHaveDisplayStart = 0x00000001,
 gaHaveBankedBuffer = 0x00000002,
 gaHaveLinearBuffer = 0x00000004,
 gaHaveAccel2D = 0x00000008,
 gaHaveHWCursor = 0x00000010,
 gaHave8BitDAC = 0x00000020,
 gaHaveNonVGAMode = 0x00000040,
 gaHaveDoubleScan = 0x00000080,
 gaHaveTripleScan = 0x00000100,
 gaHaveInterlaced = 0x00000200,
 gaHaveTripleBuffer = 0x00000400,
 gaHaveStereo = 0x00000800,
 gaHaveHWStereoSync = 0x00001000,
 gaHaveEVCStereoSync = 0x00002000,
 gaHaveAccelVideo = 0x00004000,
 gaHaveAccel3D = 0x00008000,
 gaHave8bppRGBCursor = 0x00010000,
 gaHaveAccelIOPL = 0x00040000,
 gaHaveEngineClock = 0x00200000,
 gaIsGUIDesktop = 0x01000000,
 gaIsVirtualMode = 0x08000000,
 gaHaveMultiHead = 0x02000000,
 gaHaveDFPOutput = 0x04000000,
 gaHaveLCDOutput = 0x10000000,
 gaHaveTVOutput = 0x20000000,
 gaIsTextMode = 0x40000000
 } GA_AttributeFlagsType

Prototype In
snap/graphics.h

Description
Flags for the Attributes member of the GA_mode structure and in the Attributes
member of the main GA_devCtx device context block structure. These flags define the
hardware capabilities of the particular device or graphics mode.

Info

The gaHaveDisplayStart flag is used to determine whether the graphics mode supports
changing the CRTC display start address. This is used to implement hardware virtual
scrolliong and multi-buffering for flicker free animation. If this bit is 0, then the
application cannot change the display start address after initialising a display mode.

The gaHaveBankedBuffer flag is used to determine if the graphics mode supports the
banked framebuffer access modes. If this bit is 0, then the application cannot use the
banked framebuffer style access. Some controllers may not support a banked
framebuffer mode in some modes. In this case a linear framebuffer mode will be
provided (either a banked buffer or linear buffer must be available for the mode to be
valid).

SciTech SNAP, Graphics Architecture 310

Graphics Device Driver Reference

The gaHaveLinearBuffer flag is used to determine if the graphics mode supports the
linear framebuffer access modes. If this bit is 0, then the application cannot start the
linear framebuffer graphics mode.

The gaHaveAccel2D flag is used to determine if the graphics mode supports 2D
accelerator functions. If this bit is 0, then the application can only use direct framebuffer
access in this video mode, and the 2D acceleration functions are not available. The cases
where this might crop up are more common than you might think. This bit may be 0 for
very low resolution graphics modes on some controllers, and on older controllers for the
24 bit and above graphics modes.

The gaHaveHWCursor flag is used to determine if the controller supports a hardware
cursor for the specified graphics mode. You must check this flag for each graphics mode
before attempting to use the hardware cursor functions as some graphics modes will not
be able to support the hardware cursor (but may still support 2D acceleration).

The gaHave8BitDAC flag is used to determine if the controller will be using the 8 bit
wide palette DAC modes when runing in 256 color index modes. The 8 bit DAC modes
allow the palette to be selected from a range of 16.7 million colors rather than the usual
256k colors available in 6 bit DAC mode. The 8 bit DAC mode allows the 256 color
modes to display a full range of 256 grayscales, while the 6 bit mode only allows a
selection of 64 grayscales. Note that the 8 bit DAC mode is not selectable. If the
hardware supports an 8 bit DAC, it will always be used by default.

The gaHaveNonVGAMode flag is used to determine if the mode is a VGA compatible
mode or a NonVGA mode. If this flag is set, the application software must ensure that
no attempts are made to directly program any of the standard VGA compatible registers
such as the RAMDAC control registers and inpus status registers while the NonVGA
graphics mode is used. Attempting to use these registers in NonVGA modes generally
results in the application program hanging the system.

The gaHaveDoubleScan flag is used to determine if the mode requires double scanning.
If this bit is set, the double scan bit must be set for the graphics mode if it is initialised
with generic refresh control turned on.

The gaHaveTripleScan flag is used to determine if the mode requires triple scanning. If
this bit is set, the triple scan bit must be set for the graphics mode if it is initialised with
generic refresh control turned on.

The gaHaveInterlaced flag is used to determine if the mode supports interlaced
operation or not. If this bit is set, the mode may be initialized for interlaced operation
when using the refresh rate control to initialise the mode.

The gaHaveTripleBuffer flag is used to determine if the mode supports hardware triple
buffering.

The gaHaveStereo flag is used to determine if the mode supports hardware support for
stereo LC shutter glasses.

SciTech SNAP, Graphics Architecture 311

Graphics Device Driver Reference

The gaHaveHWStereoSync flag is used to determine if the controller supports the
hardware stereo LC shutter glasses sync signal via the VESA EVC Enhanced Video
Connector. The gaHaveEVCStereoSync flag is used to determine if the controller
supports the hardware stereo LC shutter glasses sync signal via the VESA mini-DIN3
stereo connector. If either of these values are set, the application can disable all software
stero sync mechanisms and rely on the the hardware stereo sync for maximum
performance.

The gaHaveAccelVideo flag is used to determine if the mode supports hardware video
acceleration. If this bit is not 0, then the application can use the hardware video
functions for video overlay windows.

The gaHaveAccel3D flag is used to determine if the mode supports hardware 3D
acceleration. If this bit is not 0, then the application can use the hardware 3D accleration
functions for high performance 3D graphics.

The gaHave8bppRGBCursor flag is used to determine if the color values for the
hardware cursor in 8bpp modes are defined as a color index or as a TrueColor RGB
tuple. Most cards require a color index in 8bpp modes, but some new hardware uses a
TrueColor cursor in 8bpp display modes and this flag will be set if this is the case.

The gaHaveAccelIOPL flag indicates that the accelerated drawing functions require
IOPL access to be enabled. If this flag is not set, then the 2D and 3D drawing functions
use only memory mapped registers and hence can be executed entirely in ring-3 without
needing IOPL to be enabled. Note that this does not include hardware cursor functions
or hardware video overlay functions, only 2D and 3D drawing functions. It is assumed
that all initialisation and driver functions require IOPL to be enabled.

The gaIsVirtualMode flag indicates that the mode is a special multi-controller virtual
display mode that spans multiple display devices. This is an informational flag so that
any high level OS drivers can know when one of these modes is in use.

The gaHaveMultiHead flag is used to determine if the controller is capable of
supporting dual head operation via two separate CRTC connector output. This flag is
generally only included the GA_devCtx Attribute member and not in the Attributes
member of the GA_mode structure. Info

The gaHaveDFPOutput flag is used to determine if a mode can be displayed on an LCD
flat panel monitor using the DFP or DVI connectors. This flag is generally only available
for graphics cards that have DVI or DFP connector and indicates display modes can
support output to the LCD flat panel monitor monitor as well as simulatenous output to
both displays at the same time.

The gaHaveLCDOutput flag is used to determine if a mode can be displayed on an LCD
flat panel. This flag is generally only available for laptop chipsets, and indicates display
modes can support output to the LCD panel as well as simulatenous output to both
displays at the same time.

SciTech SNAP, Graphics Architecture 312

Graphics Device Driver Reference

The gaHaveTVOutput flag is used to determine if a mode can be displayed via the
TVOut connector for the graphics card. If the graphics card does not support TVOut
capabilities this flag will never be set. Otherwise it will be set for those display modes
that can be displayed on the TV. Note that both PAL and NTSC output may be
supported, or only one or the other depending on the underlying hardware.

The gaIsTextMode flag is used to determine if the mode is a graphics mode or a text
mode. If this flag is set to 1, then the mode is a hardware text mode and not a graphics
mode.

Members
gaHaveDisplayStart Mode supports changing the display start address
gaHaveBankedBuffer Mode supports banked framebuffer access
gaHaveLinearBuffer Mode supports linear framebuffer access
gaHaveAccel2D Mode supports 2D acceleration
gaHaveHWCursor Mode supports a hardware cursor
gaHave8BitDAC Mode uses an 8 bit palette DAC
gaHaveNonVGAMode Mode is a NonVGA mode
gaHaveDoubleScan Mode is double scanned
gaHaveTripleScan Mode is triple scanned
gaHaveInterlaced Mode supports interlacing
gaHaveTripleBuffer Mode supports triple buffering
gaHaveStereo Mode supports stereo LCD glasses
gaHaveHWStereoSync Mode supports stereo signalling
gaHaveEVCStereoSync Mode supports stereo sync via EVC connector
gaHaveAccelVideo Mode supports video playback acceleration
gaHaveAccel3D Mode supports 3D acceleration
gaHave8bppRGBCursor Mode requires RGB colors for 8bpp hardware

cursor
gaHaveAccelIOPL Mode needs IOPL for drawing functions
gaHaveEngineClock Display adapter supports programmable engine

clock
gaIsGUIDesktop The mode is the original GUI desktop mode
gaIsVirtualMode Mode is a multi-head or multi-controller virtual

mode
gaHaveMultiHead Display adapter supports multi head operation
gaHaveDFPOutput Mode supports output to DFP digital flat panel
gaHaveLCDOutput Mode supports output to LCD laptop display
gaHaveTVOutput Mode supports output to TV connector
gaIsTextMode Mode is a text mode rather than a graphics mode

SciTech SNAP, Graphics Architecture 313

Graphics Device Driver Reference

GA_BitBltFxFlagsType

Declaration
typedef enum {
 gaBltMixEnable = 0x00000001,
 gaBltStretchNearest = 0x00000002,
 gaBltStretchXInterp = 0x00000004,
 gaBltStretchYInterp = 0x00000008,
 gaBltColorKeySrcSingle = 0x00000010,
 gaBltColorKeySrcRange = 0x00000020,
 gaBltColorKeyDstSingle = 0x00000040,
 gaBltColorKeyDstRange = 0x00000080,
 gaBltFlipX = 0x00000100,
 gaBltFlipY = 0x00000200,
 gaBltBlend = 0x00000400,
 gaBltConvert = 0x00000800,
 gaBltClip = 0x00001000,
 gaBltDither = 0x00002000,
 gaBltTranslateVec = 0x00004000
 } GA_BitBltFxFlagsType

Prototype In
snap/graphics.h

Description
Flags for hardware blitting with special effects, passed to the BltBltFx family of
functions. This family of functions exposes a wide variety of special effects blitting if the
hardware is capable of these functions. You can determine what special effects are
supported by the hardware by examining the BitBltCaps member of the GA_modeInfo
structure. However to check whether a set of combined effects are supported, set the
desired effects flags in the GA_bltFx structure and call the BitBltFxTest function. The
driver will examine the passed in flags and return true if the combination is supported,
and false if not. Calling a BltBltFx function with a combination of flags not supported by
the hardware will produce undefined results.

The gaBltMixEnable flag determines if the graphics mode supports arbitrary mix modes
for extended BitBlt functions.

The gaBltStretchNearest flag determines if the graphics mode supports hardware stretch
blitting, with nearest pixel filtering.

The gaBltStretchXInterp flag determines if the graphics mode supports hardware stretch
blitting, with linear interpolated filtering in the X direction.

The gaBltStretchYInterp flag determines if the graphics mode supports hardware stretch
blitting, with linear interpolated filtering in the Y direction.

The gaBltColorKeySrcSingle flag determines whether the graphics mode supports
hardware source transparent blitting with single source color key. When hardware
source color keying is enabled, any pixel data in the incoming bitmap that matches the
currently set color key will be ignored and not displayed on the screen, essentially
making those source pixels transparent.

SciTech SNAP, Graphics Architecture 314

Graphics Device Driver Reference

The gaBltColorKeySrcRange flag determines whether the graphics mode supports
hardware source transparent blitting with a range of color keys. This is the same as
single source color keying, but the color key values may be allows to fall within a range
of available colors (useful if data has been filtered causing the colors to shift slightly).

The gaBltColorKeyDstSingle flag determines whether the graphics mode supports
hardware destination transparent blitting with single destination color key. When
hardware detination color keying is enabled (sometimes called blue-screening), any
destination pixels in the framebuffer that match the currently set color key, will cause
the source input pixels to be ignored.

The gaBltColorKeyDstRange flag determines whether the graphics mode supports
hardware destination transparent blitting with a range of color keys. This is the same as
single destination color keying, but the color key values may be allows to fall within a
range of available colors (useful if data has been filtered causing the colors to shift
slightly).

The gaBltFlipX flag determines whether the graphics mode supports hardware blitting
with data flipped in the X axis. This is useful for 2D sprite based games and animation
where the same sprite data can be reused for characters going left or right on the screen
by flipping the data during the blit operation.

The gaBltFlipY flag determines whether the graphics mode supports hardware blitting
with data flipped in the Y axis. This is useful for 2D sprite based games and animation
where the same sprite data can be reused for characters going up or down on the screen
by flipping the data during the blit operation.

The gaBltBlend flag determines whether the hardware can support alpha blended blit
operations.

The gaBltConvert flag determines whether the hardware can support pixel format
conversion.

The gaBltClip flag determines whether the hardware can support clipping while blitting
is in effect. This is usually only used to implement proper clipping for stretching
operations, where software clipping can get complicated.

The gaBltDither flag determines whether the closest color is selected, or if dithering is
used when blitting an RGB bitmap where the destination is an 8bpp, 15bpp or 16bpp
device context. Dithering slows things down somewhat for 15/16bpp modes, but
produces better quality. Dithering in 8bpp looks best if a halftone palette is used, and in
fact is a lot faster than using the closest color method. Dithering in 8bpp will however
map to any palette, but the quality is best if a halftone palette is used.

The gaBltTranslateVec is used to indicate that the color translation vector supplied in the
TranslateVec member. This is used in situations where the calling code has already
computed a color translation vector for the source and destination bitmaps, and will
then avoid the overhead of computing the translation vector dynamically for each blit

SciTech SNAP, Graphics Architecture 315

Graphics Device Driver Reference

operation. This is only useful when color conversting between 4bpp and 8bpp bitmaps
where the destination is also 4bpp or 8bpp (potentially with a different palette).

Note: These flags are also passed to the BitBltFx family of functions to define the type of
extended Blt that should be performed, as well as reporting the available capabilities via
the GA_bltFx structure stored in the GA_modeInfo structure.

Note: Availabiliy of some features may be mututally exclusive on other features. Hence you
must call BitBltFxTest first to find out if the set of features that you require are all
supported at the same time before attempting to perform an extended BitBlt operation.

Note: In many cases stretching with X filtering is relatively cheap, while Y filtering is more
expensive. Hence it may be faster on some hardware to enable only X filtering and not Y
filteringto get improved performance.

Members
gaBltMixEnable Mix code enabled, defined in GA_blt

structure
Fx

gaBltStretchNearest Enable stretching, nearest pixel
gaBltStretchXInterp Enable X axis filtering for stretch blit
gaBltStretchYInterp Enable Y axis filtering for stretch blit
gaBltColorKeySrcSingle Source color keying enabled, single color
gaBltColorKeySrcRange Source color keying enabled, range of colors
gaBltColorKeyDstSingle Destination color keying enabled, single color
gaBltColorKeyDstRange Destination color keying enabled, range of

colors
gaBltFlipX Enable flip in X axis
gaBltFlipY Enable flip in Y axis
gaBltBlend Enable alpha blending
gaBltConvert Enable pixel format/palette conversion
gaBltClip Clip to destination clip rectangle for stretching
gaBltDither Dither if an 8/15/16bpp destination
gaBltTranslateVec Color translation vector supplied in

TranslateVec

SciTech SNAP, Graphics Architecture 316

Graphics Device Driver Reference

GA_BresenhamLineFlagsType

Declaration
typedef enum {
 gaLineXMajor = 0x00000001,
 gaLineXPositive = 0x00000002,
 gaLineYPositive = 0x00000004,
 gaLineDoLastPel = 0x00000008,
 gaLineDoFirstPel = 0x00000010
 } GA_BresenhamLineFlagsType

Prototype In
snap/graphics.h

Description
Flags for hardware line drawing using the bresenham engine line draw function.

Members
gaLineXMajor Line is X major (ie: longer in the X direction)
gaLineXPositive Direction of line is positive in X
gaLineYPositive Direction of line is positive in Y
gaLineDoLastPel Draw the last pixel in the line

SciTech SNAP, Graphics Architecture 317

Graphics Device Driver Reference

GA_BufferFlagsType

Declaration
typedef enum {
 gaBufferSysMem = 0x00000001,
 gaBufferCached = 0x00000002,
 gaBufferMoveable = 0x00000004,
 gaBufferPageable = 0x00000008,
 gaBufferPriority = 0x00000010,
 gaBufferNoSysMem = 0x00000020,
 gaBuffer3D = 0x00000040,
 gaBufferFlippable = 0x00010000,
 gaBufferVideo = 0x00020000,
 gaBufferDepth = 0x00040000,
 gaBufferTexture = 0x00080000,
 gaBufferStencil = 0x00100000,
 gaBufferSpecial = 0x7FFF0000
 } GA_BufferFlagsType

Prototype In
snap/graphics.h

Description
Flags for buffer flags passed to the AllocBuffer function. The flags define how the buffer
is allocated, and the type of buffer.

The gaBufferSysMem flag indicates that the buffer is currently located in system
memory only. It is possible for a buffer that was allocated with the gaBufferPageable
and gaBufferCached flags to initially be in video memory but then get paged out to
system memory to make space for higher priority buffers. You can also set this flag
when you allocate a buffer to cause the buffer to be allocated in system memory instead
of video memory.

The gaBufferCached flag indicates that the buffer should have a system memory cache
allocated for it, so that it can be swapped in and out of video memory as necessary.
Sometimes it may be useful to have buffers cached in system memory, but not have
them pageable. Thus the system memory cache can be used to refresh the video memory
as necessary if the video memory contents were lost (ie: on a focus switch etc). Note that
the system memory cache is not maintained automaticaly by SNAP Graphics, but rather
it is up to the application code to maintain the contents of the system memory cache if
they need to be kept in sync. You can use the UpdateCache and UpdateFromCache
functions to keep the system memory cache in sync as necessary.

The gaBufferMoveable flag indicates that the buffer should be allocated on the moveable
buffer heap, so that the buffer can be moved around as necessary to compact the heap if
it becomes fragmented. For buffers that should never move in video memory, this flag
should not be set and the buffers will be allocated in the non-moveable or fixed heap.

The gaBufferPageable flag indicates that the buffer is a low priority buffer and can be
paged to system memory in order to make room for higher priority buffers. Setting
gaBufferPageable flag will automatically set the gaBufferCached flag so that there is a

SciTech SNAP, Graphics Architecture 318

Graphics Device Driver Reference

system memory cache for the buffer. Pageable buffers will be paged back into video
memory when the heap becomes free of all non-pageable buffers. Hence shell drivers
using the buffer manager to cache bitmaps etc should make those bitmaps all pageable,
so that they will get pages to system memory if applications need more offscreen
memory (ie: 2D or 3D graphics intensive apps). When the graphics intensive app exits,
the pageable buffers will get pages back into video memory as all non-pageable buffers
will have been free.

The gaBufferPriority flag indicates that the buffer is a high priority buffer. As long as
there are any high priority buffers still allocated, the buffer manager will not attempt to
page back in pageable buffers from system memory. Hence DirectDraw application
buffers etc should be marked as priority buffers, so that pageable buffers will not be
brought back into video memory until the DirectDraw app exits.

The gaBufferNoSysMem flag is used to indicate that the surface being created should
only ever be allocated in video memory. If there is no video memory available, the
buffer allocation function will fail (normally it will attempt to allocate the buffer in
system memory if the gaBufferCached or gaBufferPageable flags are set).

The gaBuffer3D flag is used to indicate that the surface being created should be capable
for being the destination for 3D hardware rendering. If you need hardware 3D
capabilities for the primary and flippable buffers, you should pass this flag to the
InitBuffers function when you initialise the buffer manager.

The gaBufferFlippable flag is used to indicate whether the buffer is a flippable buffer
that can be viewed and made visible via the MakeVisibleBuffer function. All flippable
buffers must be the same dimensions as the primary display mode, and are allocated
when you first call the InitBuffers function to initialise the buffer manager.

The gaBufferVideo flag is an internal flag used to indicate that the buffer is a video
overlay window buffer.

The gaBufferDepth flag is an internal flag used to indicate that the buffer is a hardware
depth buffer.

The gaBufferTexture flag is an internal flag used to indicate that the buffer is a hardware
texture map.

The gaBufferStencil flag is an internal flag used to indicate that the buffer is a hardware
stencil bufer.

Note: These flags are also passed to the AllocBuffer function to determine how the buffer should
be allocated. Some of the flags are internal and should never be passed to AllocBuffer as
they are used internally. Flags above or equal to gaVideo are used internally to indicate
what type of buffer is in use (since all buffers are internally allocated from the same heap).

Members
gaBufferSysMem Buffer is currently located in system memory

SciTech SNAP, Graphics Architecture 319

Graphics Device Driver Reference

gaBufferCached Buffer is cached in system memory
gaBufferMoveable Buffer can be moved around to compact buffer heap
gaBufferPageable Buffer can be paged to system memory
gaBufferPriority Buffer is a high priority bitmap
gaBufferNoSysMem Buffer should never be in system memory
gaBufferFlippable Buffer is a viewable, flippable surface
gaBuffer3D Buffer is a hardware 3D capable surface
gaBufferVideo Buffer is a video overlay window surface
gaBufferDepth Buffer is a hardware depth buffer
gaBufferTexture Buffer is a hardware texture map
gaBufferStencil Buffer is a hardware stencil buffer
gaBufferSpecial Mask to determine if buffer is special buffer

SciTech SNAP, Graphics Architecture 320

Graphics Device Driver Reference

GA_CRTCInfo

Declaration
typedef struct {
 N_uint16 HorizontalTotal;
 N_uint16 HorizontalSyncStart;
 N_uint16 HorizontalSyncEnd;
 N_uint16 VerticalTotal;
 N_uint16 VerticalSyncStart;
 N_uint16 VerticalSyncEnd;
 N_uint32 PixelClock;
 N_uint16 RefreshRate;
 N_uint8 Flags;
 } GA_CRTCInfo

Prototype In
snap/graphics.h

Description
CRTC information block for refresh rate control, passed in to the SetVideoMode
function.

The HorizontalTotal, HorizontalSyncStart, HorizontalSyncEnd, VerticalTotal,
VerticalSyncStart and VerticalSyncEnd members define the default normalized CRTC
values that will be programmed if the gaRefreshCtl flag is passed to SetVideoMode. The
CRTC values for a particular resolution will always be the same regardless of color
depth. Note also that the CRTC table does not contain any information about the
horizontal and vertical blank timing positions. It is up the the driver implementation to
determine the correct blank timings to use for the mode when it is initialized depending
on the constraints of the underlying hardware (some hardware does not require this
information, and most VGA compatible hardware can be very picky about the values
programmed for the blank timings).

The Flags member defines the flags that modify the operation of the mode, and the
values for this member are defined in the GA_CR enumeration. TCInfoFlagsType

The PixelClock member defines the normalized pixel clock that will be programmed into
the hardware. This value is represented in a 32 bit unsigned integer in units of Hz. For
example to represent a pixel clock of 25.18Mhz one would code a value of 25,180,000.
From the pixel clock and the horizontal and vertical totals, you can calculate the refresh
rate for the specific graphics mode using the following formula:

refresh rate = (PixelClock * 10,000) /
 (HorizontalTotal * VerticalTotal)

For example a 1024x768 mode with a HTotal of 1360, VTotal of 802, a pixel clock of
130Mhz might be computed as follows:

refresh rate = (130 * 10,000) / (1360 * 802)
 = 59.59 Hz

SciTech SNAP, Graphics Architecture 321

Graphics Device Driver Reference

The RefreshRate field defines the refresh rate that the CRTC information values define.
This value may not actually be used by the driver but must be calculated by the
application program using the above formulas before initializing the mode. This entry
may be used by the driver to identify any special cases that may need to be handled
when setting the mode for specific refresh rates. The value in this field should be
represented in units if 0.01 Hz (ie: a value 7200 represents a refresh rate of 72.00Hz).

Note: The dwSize member is intended for future compatibility, and should be set to the size of
the structure as defined in this header file. Future drivers will be compatible with older
software by examiming this value.

Members
HorizontalTotal Horizontal total (pixels)
HorizontalSyncStart Horizontal sync start position
HorizontalSyncEnd Horizontal sync end position
VerticalTotal Vertical Total (lines)
VerticalSyncStart Vertical sync start position
VerticalSyncEnd Vertical sync end position
PixelClock Pixel clock in units of Hz
RefreshRate Expected refresh rate in .01Hz
Flags Initialisation flags for mode

SciTech SNAP, Graphics Architecture 322

Graphics Device Driver Reference

GA_CRTCInfoFlagsType

Declaration
typedef enum {
 gaInterlaced = 0x01,
 gaDoubleScan = 0x02,
 gaTripleScan = 0x04,
 gaHSyncNeg = 0x08,
 gaVSyncNeg = 0x10
 } GA_CRTCInfoFlagsType

Prototype In
snap/graphics.h

Description
Definitions for flags member of the GA_CRTCInfo structure. These flags define the
different flags required to complete a mode set with refresh rate control enabled.

The gaInterlaced flag is used to determine whether the mode programmed into the
hardware is interlaced or non-interlaced. The CRTC timings passed in will be identical
for both interlaced and non-interlaced modes, and it is up to the graphics driver to
perform any necessary scaling between the hardware values and the normalized CRTC
values in interlaced modes. Note that you must check the gaHaveInterlaced bit in the

 structure to determine if interlaced mode is supported before attempting to
initialise an interlaced mode.
GA_modeInfo

Enable triple scanned mode

The gaDoubleScan flag is used to determine whether the mode programmed into the
hardware is double scanned or not. When double scanning is specified, the vertical
CRTC values passed in will be double what the real vertical resolution will be. Double
scanning is used to implement the 200, 240 and 300 line graphics modes on modern
controllers. Note that you must check the gaHaveDoubleScan bit in the GA_modeInfo
structure to determine if double scan mode is supported by the hardware in that display
mode. Note also that all modes with vertical resolutions below 300 scanline modes
require the double scanning to be enabled, and modes between 300 and 400 scanlines
can usually look better if it is enabled.

The gaHSyncNeg flag is used to determine if the horizontal sync polority should be set
to a negative sync (gaHSyncNeg is set) or positive sync (gaHSyncNeg is not set).

The gaVSyncNeg flag is used to determine if the vertical sync polority should be set to a
negative sync (gaVSyncNeg is set) or positive sync (gaVSyncNeg is not set).

Members
gaInterlaced Enable interlaced mode
gaDoubleScan Enable double scanned mode
gaTripleScan
gaHSyncNeg Horizontal sync is negative
gaVSyncNeg Vertical sync is negative

SciTech SNAP, Graphics Architecture 323

Graphics Device Driver Reference

GA_CertifyFlagsType

Declaration
typedef enum {
 gaCertified = 0x01,
 gaCertifiedDDC = 0x02,
 gaCertifiedStereo = 0x04,
 gaCertifiedDDC_NT = 0x08,
 gaCertifiedStereo_NT = 0x10
 } GA_CertifyFlagsType

Prototype In
snap/graphics.h

Description
Definitions for values stored in the CertifyFlags member of the GA_certifyChipInfo and
structure. These flags define what certification tests have been run on the included
drivers.

The gaCertified value indicates that the driver has been certified to have passed all the
base certification tests, and is usually the only important flag for most situations.

The gaCertifiedDDC value indicates that the driver has also passed all Windows DDC
certification tests, running on the IHV Windows drivers. These tests are indepedant of
the base certification tests as they are dependant on proper testing with the IHV
Windows drivers as well as the base certification tests. The gaCertifiedDDC_NT flag is
equivalent but indicates that the chipset driver is also certified for DDC on the Windows
NT platform.

The gaCertifiedStereo value indicates that the driver has also passed all Windows Stereo
certification tests, running on the IHV Windows drivers. These tests are indepedant of
the base certification tests as they are dependant on proper testing with the IHV
Windows drivers as well as the base certification tests. The gaCertifiedStereo_NT flag is
equivalent but indicates that the chipset driver is also certified for stereo on the
Windows NT platform.

The gaCertifiedDFPOutput value indicates that the driver has also passed all the
external digital flat panel tests such that attaching an external digital flat panel to the
graphics card will function correctly.

The gaCertifiedTVOutput value indicates that the driver has also passed all the external
TV output tests such that attaching an external television to either the composite or S-
Video connectors of the graphics card will function correctly.

Members
gaCertified Driver has passed all base certification tests
gaCertifiedDDC Driver has passed all Windows DDC tests
gaCertifiedStereo Driver has passed all Windows stereo tests
gaCertifiedDDC_NT Driver has passed all Windows NT DDC tests

SciTech SNAP, Graphics Architecture 324

Graphics Device Driver Reference

gaCertifiedStereo_NT Driver has passed all Windows NT stereo tests

SciTech SNAP, Graphics Architecture 325

Graphics Device Driver Reference

GA_DPMSFuncs

Prototype In

Function group containing all DPMS Display Power Management functions available for
the device. These functions are used to power down the external CRT or LCD flat panel
monitor via the VESA Dislay Power Management Specification standard.

snap/graphics.h

Description

Note: Be sure to fill in the dwSize member of this structure when you call GA_queryFunctions
to the correct size of the structure at compile time!

SciTech SNAP, Graphics Architecture 326

Graphics Device Driver Reference

DPMSdetect

Detects the presence of DPMS Power Management features

Declaration
int NAPI GA_DPMSFuncs::DPMSdetect(
 N_int16 *supportedStates)

Prototype In
snap/ddc.h

Parameters
supportedStates Place to return the supported DPMS states

Return Value
1 if supported, 0 if not supported.

Description

DPMSdetect, DPMSsetState

Detects what Display Power Management features are provided by the loaded driver.
The list of available Power Management states is returned via supportedStates, which
consist of the flags defined in the DDC_DPMSFlagsType enumeration.

See Also

SciTech SNAP, Graphics Architecture 327

Graphics Device Driver Reference

DPMSsetState

Sets the requested DPMS Power Management state.

Declaration

snap/ddc.h

New DPMS state to set

Description

SStatesType

DPMSdetect, DPMSsetState

void NAPI GA_DPMSFuncs::DPMSsetState(
 N_int32 state)

Prototype In

Parameters
state

This function sets the requested Power Management state. The list of valid states that
can be set is defined in the DDC_DPM enumeration.

See Also

SciTech SNAP, Graphics Architecture 328

Graphics Device Driver Reference

GA_LCDUseBIOSFlagsType

Declaration
typedef enum {
 gaLCDUseBIOS_Auto = 0,
 gaLCDUseBIOS_Off = 1,
 gaLCDUseBIOS_On = 2
 } GA_LCDUseBIOSFlagsType

Description
obalOptions

Prototype In
snap/graphics.h

Definitions for values stored in the bLCDUseBIOS member of the GA_gl
structure. These flags define the different values for this particular option which is
multi-state and not just an on/off option.

The gaLCDUseBIOS_Off value indicates that the the BIOS should not be used for LCD
panel modes unless the user has manually switched the driver to run in LCD only or
Simultaneous mode. In this mode some laptops will not be able to switch into LCD
mode from CRT only mode if the user uses the laptop hot-key switching (the SNAP
Graphics API can always be used for correct switching).

The gaLCDUseBIOS_Auto value will auto select the best option at driver load time. If
the system boots up in either LCD only mode or in Simultaneous mode, the driver will
always use the BIOS even if the user switches to CRT only mode (ie: equivalent to
gaLCDUseBIOS_On). If the system boot up in CRT only mode, the driver will not use
the BIOS unless the user manually switches to LCD panel mode using the SNAP
Graphics API (ie: equivalent to gaLCDUseBIOS_Off).

gaLCDUseBIOS_On value indicates that the BIOS should always be used for drivers
with LCD panel support. This means that even when the user uses the SNAP Graphics
API to switch to CRT only mode, the BIOS will be used to set the mode (with restricted
modes and features). This mode is useful if the user switches to and from LCD panel
and CRT only modes and needs the hot key switching provided in the BIOS to function
correctly.

Members
gaLCDUseBIOS_Auto Auto select the best option at driver load time
gaLCDUseBIOS_Off Only use the BIOS modes when running on the LCD
gaLCDUseBIOS_On Always use the BIOS for drivers with LCD panel

support

SciTech SNAP, Graphics Architecture 329

Graphics Device Driver Reference

GA_MakeVisibleBufferFlagsType

Declaration
typedef enum {
 gaTripleBuffer = 0,
 gaWaitVRT = 1,
 gaDontWait = 2
 } GA_MakeVisibleBufferFlagsType

Prototype In
snap/graphics.h

Description
Flags passed to the MakeVisibleBuffer function for the waitVRT parameter.

The gaTripleBuffer flag is used to indicate that the visible buffers should be flipped
using hardware or software triple buffering where available. This may not be available
on all platforms, and if not available gaDontWait is used instead. Hence you may get
tearing using this value if the hardware or software triple buffering is not supported and
the frame rate of your application is faster than the vertical refresh rate of the display.

The gaWaitVRT flag is used to indicate that the visible buffers should be flipped and
that the code should wait for the vertical retrace period before returning. This is
necessary to avoid any tearing on the screen if you are doing double buffering, and is
the most common value passed to the MakeVisibleBuffer function.

The gaDontWait flag is used to indicate that the visible buffers should be flipped but the
code should exit immediately and not wait for the vertical retrace period.

Note: If there are only two flippable buffers allocated, the gaTripleBuffer flag will be converted to
the gaWaitVRT parameter.

Members
gaTripleBuffer Flip the buffers with triple buffering if available
gaWaitVRT Flip the buffers and wait for vertical retrace
gaDontWait Flip the buffers and don't wait for retrace

SciTech SNAP, Graphics Architecture 330

Graphics Device Driver Reference

GA_OutputFlagsType

Declaration
typedef enum {
 gaOUTPUT_CRT = 0x0001,
 gaOUTPUT_LCD = 0x0002,
 gaOUTPUT_DFP = 0x0400,
 gaOUTPUT_TV = 0x0004,
 gaOUTPUT_SELECTMASK = 0x0407,
 gaOUTPUT_TVNTSC = 0x0008,
 gaOUTPUT_TVNTSC_J = 0x0010,
 gaOUTPUT_TVPAL = 0x0020,
 gaOUTPUT_TVPAL_M = 0x0040,
 gaOUTPUT_TVPAL_60 = 0x0080,
 gaOUTPUT_TVPAL_CN = 0x0100,
 gaOUTPUT_TVSCART_PAL = 0x0200,
 gaOUTPUT_TVUNDERSCAN = 0x0000,
 gaOUTPUT_TVOVERSCAN = 0x8000,
 gaOUTPUT_TVCOLORMASK = 0x03F8
 } GA_OutputFlagsType

Prototype In
snap/graphics.h

Description
Flags for the different output displays supported by the driver. These flags are passed to
the SetDisplayOutput function to change the currently active display device and the
GetDisplayDevice function to determine what devices are currenlty being used to
display output.

Note: The color format for TV modes may be specified, or it may not. In the case where the color
format is not specified, the currently active color format will be used. In some cases the
color format is set in hardware and cannot be changed.

Members
gaOUTPUT_CRT Indicates output is sent to CRT display
gaOUTPUT_LCD Indicates output is sent to LCD panel
gaOUTPUT_DFP Indicates output is sent to external DFP connector
gaOUTPUT_TV Indicates output is sent to TV connector
gaOUTPUT_SELECTMASK Mask to mask out just the output selection
gaOUTPUT_TVNTSC Set TVOut connector color format to NTSC
gaOUTPUT_TVNTSC_J Set TVOut connector color format to NTSC-J
gaOUTPUT_TVPAL Set TVOut connector color format to PAL
gaOUTPUT_TVPAL_M Set TVOut connector color format to PAL-M
gaOUTPUT_TVPAL_60 Set TVOut connector color format to PAL-60
gaOUTPUT_TVPAL_CN Set TVOut connector color format to PAL-CN
gaOUTPUT_TVSCART_PAL Set TVOut connector color format to SCART-PAL
gaOUTPUT_TVUNDERSCAN Indicates TV output should be underscanned
gaOUTPUT_TVOVERSCAN Indicates TV output should be overscanned
gaOUTPUT_TVCOLORMASK Mask to mask out TV color format

SciTech SNAP, Graphics Architecture 331

Graphics Device Driver Reference

GA_SCIFuncs

Prototype In
snap/graphics.h

Description
Function group containing all SCI Serial Control Interface functions available for the
device. These functions are used to communicate over the I2C bus with external devices
such as DDC (or Plug and Play) monitors, TV encoders and TV tuners.

Note: Be sure to fill in the dwSize member of this structure when you call GA_queryFunctions
to the correct size of the structure at compile time!

SciTech SNAP, Graphics Architecture 332

Graphics Device Driver Reference

SCIbegin

Begin serial communications.

Declaration
void NAPI GA_SCIFuncs::SCIbegin(
 N_int32 channel)

Prototype In
snap/ddc.h

Parameters
channel Channel to control via I2C (DDC_ChannelsType)

Description
This function starts a series of SCI communications on the bus and puts the graphics
hardware into the necessary state for SCI communications. You must call this function
before you can call any of the SCIreadXX or SCIwriteXX functions. You must also call

 to complete communications when you are done. SCIend

SCIdetect CIwriteSDA
See Also

, SCIbegin, SCIwriteSCL, S , SCIreadSCL, SCIreadSDA, SCIend

SciTech SNAP, Graphics Architecture 333

Graphics Device Driver Reference

SCIdetect

Detects the presence of Serial Control Interface functions.

Declaration
int NAPI GA_SCIFuncs::SCIdetect(
 N_uint8 *capabilities,
 N_int32 *numchannels)

Prototype In
snap/ddc.h

Parameters
capabilities Place to store SCI capabilities
numchannels Place to store number of ports supported

Return Value
1 if supported, 0 if not supported.

Description
Detects if the SCI Serial Control Interface extensions are provided by the loaded driver.
The capabilities of the SCI interface is returned via the capabilities parameter, which
consist of the flags defined in DDC_SCIFlagsType. Generally, application software will
not directly control the SCI interface, but will use the higher level DDC and MCS
functions, which implement packet based protocols over the SCI interface. The DDC and
MCS functions all internally use the SCI interface functions to communicate with the
monitor.

See Also
SCIdetect CIwriteSDA, SCIbegin, SCIwriteSCL, S , SCIreadSCL, SCIreadSDA, SCIend

SciTech SNAP, Graphics Architecture 334

Graphics Device Driver Reference

SCIend

End serial communications.

Declaration
void NAPI GA_SCIFuncs::SCIend(
 N_int32 channel)

Prototype In
snap/ddc.h

Parameters
channel Channel to control via I2C (DDC_ChannelsType)

Description
Complete serial communications over the I2C bus. This function must be called after
doing communications over the bus.

See Also
SCIdetect CIwriteSDA, SCIbegin, SCIwriteSCL, S , SCIreadSCL, SCIreadSDA, SCIend

SciTech SNAP, Graphics Architecture 335

Graphics Device Driver Reference

SCIreadSCL

Reads the SCL clock line

Declaration
int NAPI GA_SCIFuncs::SCIreadSCL(
 N_int32 channel)

Prototype In
snap/ddc.h

Parameters
channel Channel to control via I2C (DDC_ChannelsType)

Return Value
Bit value read from port

Description
This function reads the value from the SCL clock line and returns it. Note that not all
controllers support this function so you must determine if this function is supported by
looking at the returned SCI capabilities flags. For cards that do not allow reading of the
clock line, a delay based system must be used to slow down the host during transfer to
the display. Normally the SCL line is used by the display device to speed throttle the
host transfers by forcing the SCL line low while it is busy and unable to respond.

See Also
SCIdetect CIwriteSDA, SCIbegin, SCIwriteSCL, S , SCIreadSCL, SCIreadSDA, SCIend

SciTech SNAP, Graphics Architecture 336

Graphics Device Driver Reference

SCIreadSDA

Reads the SDA data line

SCIdetect CIwriteSDA

Declaration
int NAPI GA_SCIFuncs::SCIreadSDA(
 N_int32 channel)

Prototype In
snap/ddc.h

Parameters
channel Channel to control via I2C (DDC_ChannelsType)

Return Value
Bit value read from port

Description
This function read the value from the SDA data line and returns it.

See Also
, SCIbegin, SCIwriteSCL, S , SCIreadSCL, SCIreadSDA, SCIend

SciTech SNAP, Graphics Architecture 337

Graphics Device Driver Reference

SCIwriteSCL

Sets the SCL clock line to the specified value

Declaration
void NAPI GA_SCIFuncs::SCIwriteSCL(
 N_int32 channel,
 N_int32 bit)

Prototype In
snap/ddc.h

SCIdetect CIwriteSDA

Parameters
channel Channel to control via I2C (DDC_ChannelsType)
bit Bit value to write to port (0 or 1)

Description
This function sets the SCL clock line to the specified value

See Also
, SCIbegin, SCIwriteSCL, S , SCIreadSCL, SCIreadSDA, SCIend

SciTech SNAP, Graphics Architecture 338

Graphics Device Driver Reference

SCIwriteSDA

Sets the SDA data line to the specified value

Declaration
void NAPI GA_SCIFuncs::SCIwriteSDA(
 N_int32 channel,
 N_int32 bit)

Prototype In
snap/ddc.h

Parameters
channel Channel to control via I2C (DDC_ChannelsType)
bit Bit value to write to port (0 or 1)

SCIdetect CIwriteSDA

Description
This function sets the SDA data line to the specified value

See Also
, SCIbegin, SCIwriteSCL, S , SCIreadSCL, SCIreadSDA, SCIend

SciTech SNAP, Graphics Architecture 339

Graphics Device Driver Reference

GA_TVParams

Declaration
typedef struct {
 N_int16 hPos;
 N_int16 vPos;
 N_uint16 brightness;
 N_uint16 contrast;
 } GA_TVParams

Prototype In
snap/graphics.h

Description
Structure used to describe the TV parameters specific to a particular TV output mode.
We store these values independently in the options structure for different TV modes (ie:
640x480, 800x600, PAL, NTSC etc).

Members
hPos Horizontal position value (+-)
vPos Vertical position value (+-)
brightness Brightness control value
contrast Contrast control value

SciTech SNAP, Graphics Architecture 340

Graphics Device Driver Reference

GA_VBEFuncs

Prototype In
snap/graphics.h

Description
Function group containing all VBE/Core emulation functions. These functions should
generally not be used by application programs directly, as they are only intended to be
used by the VBE/Core emulation driver.

Note: Be sure to fill in the dwSize member of this structure when you call GA_queryFunctions
to the correct size of the structure at compile time!

SciTech SNAP, Graphics Architecture 341

Graphics Device Driver Reference

GetPaletteData

Returns the current hardware color palette in VBE/Core compatible mode

Declaration
void GA_VBEFuncs::GetPaletteData(
 GA_palette *pal,
 N_int32 num,
 N_int32 index)

Prototype In
snap/graphics.h

Parameters
pal Place to return the palette data
num Number of palette entries to read

eData

SetBytesPerLine eData

index Index of first entry to read

Description
This function is similar to GetPalett , however the palette data is always read
verbatim, and no palette translation occurs. Hence these functions are compatible with
the way the VESA VBE/Core palette functions work, which is different to the native
SNAP way of handling palette programming.

See Also
, Set8BitDAC, SetPalett

SciTech SNAP, Graphics Architecture 342

Graphics Device Driver Reference

Set8BitDAC

Allow the RAMDAC width to be changed at runtime

Declaration
ibool GA_VBEFuncs::Set8BitDAC(
 ibool enable)

Prototype In
snap/graphics.h

Return Value
True if request fulfilled, false if not

Description
This function allows the RAMDAC pixel width to be changed betwen 8-bit per primary
mode or the VGA compatible 6-bit per primary mode. This primary use of this function
is to allow emulation of VESA VBE/Core functions on top of native SNAP drivers (ie:
DOS box support in Windows etc).

See Also
SetBytesPerLine eData aletteData, SetPalett , GetP

SciTech SNAP, Graphics Architecture 343

Graphics Device Driver Reference

SetBytesPerLine

Allows the pixel stride of the display mode to be changed

Declaration
ibool GA_VBEFuncs::SetBytesPerLine(
 int bytesPerLine,
 int *newBytes)

Prototype In
snap/graphics.h

Parameters
bytesPerLine Requested scanline pitch to set
newBytes Place to store actual scanline pitch set

Description
This function allows the display stride to be changed after the mode has been initialised.
Note that this will only work reliabley if the mode was initialised with the gaNoAccel
flag, to ensure that the hardware accelerator is not active. This primary use of this
function is to allow emulation of VESA VBE/Core functions on top of native SNAP
drivers (ie: DOS box support in Windows etc).

See Also
Set8BitDAC, SetPaletteData, GetPaletteData

SciTech SNAP, Graphics Architecture 344

Graphics Device Driver Reference

SetPaletteData

Programs the hardware color palette in VBE/Core compatible mode

Declaration
void GA_VBEFuncs::SetPaletteData(
 GA_palette *pal,
 N_int32 num,
 N_int32 index,
 N_int32 waitVRT)

Prototype In
snap/graphics.h

Parameters
pal Pointer to the palette data to program
num Number of palette entries to program
index Index of first entry to program
waitVRT Wait for vertical retrace flag

Description
This function is similar to SetPaletteData, however the palette data is always
programmed into the hardware palette verbatim, and no palette translation occurs.
Hence these functions are compatible with the way the VESA VBE/Core palette
functions work, which is different to the native SNAP way of handling palette
programming.

See Also
SetBytesPerLine etteData, Set8BitDAC, GetPal

SciTech SNAP, Graphics Architecture 345

Graphics Device Driver Reference

GA_VideoBufferFormatsType

Declaration

eInfo

typedef enum {
 gaVideoRGB332 = 0x00000001,
 gaVideoRGB555 = 0x00000002,
 gaVideoRGB565 = 0x00000004,
 gaVideoRGB888 = 0x00000008,
 gaVideoRGB8888 = 0x00000010,
 gaVideoYUV9 = 0x00000020,
 gaVideoYUV12 = 0x00000040,
 gaVideoYUV411 = 0x00000080,
 gaVideoYUV422 = 0x00000100,
 gaVideoYUV444 = 0x00000200,
 gaVideoYCrCb422 = 0x00000400,
 gaVideoYUYV = 0x08000000,
 gaVideoYVYU = 0x10000000,
 gaVideoUYVY = 0x20000000,
 gaVideoVYUY = 0x40000000
 } GA_VideoBufferFormatsType

Prototype In
snap/graphics.h

Description
Flags for hardware video input formats defined in the VideoInputFormats member of
the GA_videoInf structure. These flags define the hardware video capabilities of the
particular video overlay window, and are only valid if the gaHaveAccelVideo flag is
defined in the Attributes member of the GA_mod structure.

The gaVideoRGB332 flag is used to determine whether the video overlay window can
support hardware video playback of frames stored in the RGB 3:3:2 format (8 bits per
pixel).

The gaVideoRGB555 flag is used to determine whether the video overlay window can
support hardware video playback of frames stored in the RGB 5:5:5 format (16 bits per
pixel, 1 ignored).

The gaVideoRGB565 flag is used to determine whether the video overlay window can
support hardware video playback of frames stored in the RGB 5:6:5 format (16 bits per
pixel).

The gaVideoRGB888 flag is used to determine whether the video overlay window can
support hardware video playback of frames stored in the RGB 8:8:8 format (24 bits per
pixel). Only one RGB format is supported, and the Blue byte is always stored first in
memory (ie: B:G:R).

The gaVideoRGB8888 flag is used to determine whether the video overlay window can
support hardware video playback of frames stored in the RGB 8:8:8:8 format (32 bits per
pixel). Only one RGB format is supported, and the Blue byte is always stored first in
memory (ie: B:G:R:A).

SciTech SNAP, Graphics Architecture 346

Graphics Device Driver Reference

The gaVideoYUV9 flag is used to determine whether the video overlay window can
support hardware video playback of frames stored in the YUV9 format. For more
information on different YUV formats and how they are actually stored in the
framebuffer, see the section titled 'Overview of YUV pixels'.

The gaVideoYUV12 flag is used to determine whether the video overlay window can
support hardware video playback of frames stored in the YUV12 format. For more
information on different YUV formats and how they are actually stored in the
framebuffer, see the section titled 'Overview of YUV pixels'.

The gaVideoYUV411 flag is used to determine whether the video overlay window can
support hardware video playback of frames stored in the YUV 4:1:1 format. The YUV
4:1:1 data can be stored with the YUV values in varying formats, and you should check
the gaVideoYUYV etc flags to determine which formats are supported by this controller.
For more information on different YUV formats and how they are actually stored in the
framebuffer, see the section titled 'Overview of YUV pixels'.

The gaVideoYUV422 flag is used to determine whether the video overlay window can
support hardware video playback of frames stored in the YUV 4:2:2 format. The YUV
4:2:2 data can be stored with the YUV values in varying formats, and you should check
the gaVideoYUYV etc flags to determine which formats are supported by this controller.
For more information on different YUV formats and how they are actually stored in the
framebuffer, see the section titled 'Overview of YUV pixels'.

The gaVideoYUV444 flag is used to determine whether the video overlay window can
support hardware video playback of frames stored in the YUV 4:4:4 format. The YUV
4:4:4 data can be stored with the YUV values in varying formats, and you should check
the gaVideoYUYV etc flags to determine which formats are supported by this controller.
For more information on different YUV formats and how they are actually stored in the
framebuffer, see the section titled 'Overview of YUV pixels'.

The gaVideoYCrCb422 flag is used to determine whether the video overlay window can
support hardware video playback of frames stored in the YCrCb 4:2:2 format. The
YCrCb 4:2:2 data can be stored with the YUV values in varying formats, and you should
check the gaVideoYUYV etc flags to determine which formats are supported by this
controller. For more information on different YUV formats and how they are actually
stored in the framebuffer, see the section titled 'Overview of YUV pixels'.

The gaVideoYUYV, gaVideoYVYU, gaVideoUYVY and gaVideoVYUY flags are used to
determine what YUV pixel layouts is supported for the above suppored YUV pixel
formats.

Note: These flags are also passed to the AllocVideoBuffer function to determine the video input
data type being displayed for the video window.

SciTech SNAP, Graphics Architecture 347

Graphics Device Driver Reference

Note: The gaVideoYUYV and related flags define the YUV pixel layouts that are supported by
the hardware for the YUV input format it supports. For instance the hardware may report
gaVideoYUV422 and the gaVideoYUYV flags, which means it supports the YUV422
format with the format 4:2:4:2 (Y:U:Y:V) in video memory. See the section titled
'Overview of YUV Pixels' for more information.

Members
gaVideoRGB332 Supports RGB 3:3:2 input format
gaVideoRGB555 Supports RGB 5:5:5 input format
gaVideoRGB565 Supports RGB 5:6:5 input format
gaVideoRGB888 Supports RGB 8:8:8 input format
gaVideoRGB8888 Supports RGB 8:8:8:8 input format
gaVideoYUV9 Supports YUV9 input format
gaVideoYUV12 Supports YUV12 input format
gaVideoYUV411 Supports YUV411 input format
gaVideoYUV422 Supports YUV422 input format
gaVideoYUV444 Supports YUV444 input format
gaVideoYCrCb422 Supports YCrCb422 input format
gaVideoYUYV Supports the YUYV pixel layout (for the above YUV

formats)
gaVideoYVYU Supports the YVYU pixel layout (for the above YUV

formats)
gaVideoUYVY Supports the UYVY pixel layout (for the above YUV

formats)
gaVideoVYUY Supports the VYUY pixel layout (for the above YUV

formats)

SciTech SNAP, Graphics Architecture 348

Graphics Device Driver Reference

GA_VideoOutputFlagsType

Declaration
typedef enum {
 gaVideoXInterp = 0x00000001,
 gaVideoYInterp = 0x00000002,
 gaVideoColorKeySrcSingle = 0x00000004,
 gaVideoColorKeySrcRange = 0x00000008,
 gaVideoColorKeyDstSingle = 0x00000010,
 gaVideoColorKeyDstRange = 0x00000020
 } GA_VideoOutputFlagsType

Prototype In
snap/graphics.h

Description
Flags for hardware video output capabilities defined in the VideoOutputFlags member
of the GA_videoInf structure. These flags define the hardware video capabilities of the
particular graphics mode, and are only valid if the gaHaveAccelVideo flag is defined in
the Attributes member of the GA_modeInfo structure.

The gaVideoXInterp flag is used to determine whether the video overlay window can
support hardware interpolation or filtering in the X axis when scaling the input image to
the display. If this bit is 1, then the hardware can support filtering of values in the X
direction resulting in better looking images when scaled from a smaller input frame.

The gaVideoYInterp flag is used to determine whether the video overlay window can
support hardware interpolation or filtering in the Y axis when scaling the input image to
the display. If this bit is 1, then the hardware can support filtering of values in the Y
direction resulting in better looking images when scaled from a smaller input frame.

The gaVideoColorKeySrcSingle flag is used to determine whether the video overlay
window can support hardware source color keying with a single source color key value.
When hardware source color keying is enabled, any pixel data in the incoming source
video that matches the currently set video color key will be ignored and not displayed
on the screen, essentially allowing the display data under the video overlay window to
show through.

The gaVideoColorKeySrcRange flag is used to determine whether the video overlay
window can support hardware source color keying with a range of color key values.
This is the same as single source color keying, but the color key values may be allows to
fall within a range of available colors (useful if data has been filtered causing the colors
to change).

The gaVideoColorKeyDstSingle flag is used to determine whether the video overlay
window can support hardware destination color keying with a single destination color
key value. When hardware detination color keying is enabled (sometimes called blue-
screening), any destination pixels that the overlay window overlaps that match the

SciTech SNAP, Graphics Architecture 349

Graphics Device Driver Reference

currently set video color key, will cause the source input pixels to be ignored, essentially
allowing the display data under the video overlay window to show through.

The gaVideoColorKeyDstRange flag is used to determine whether the video overlay
window can support hardware destination color keying with a range of color key
values. This is the same as single destination color keying, but the color key values may
be allows to fall within a range of available colors.

Note: These flags are also passed to the SetVideoOutput function to determine what features are
enabled for the output window.

Members
gaVideoXInterp Supports X interpolation
gaVideoYInterp Supports Y interpolation
gaVideoColorKeySrcSingle Supports source color keying, single color
gaVideoColorKeySrcRange Supports source color keying, range of colors
gaVideoColorKeyDstSingle Support destination color keying, single color
gaVideoColorKeyDstRange Support destination color keying, range of

colors

SciTech SNAP, Graphics Architecture 350

Graphics Device Driver Reference

GA_WorkAroundsFlagsType

Declaration
typedef enum {
 gaSlowBltSys = 0x00000001,
 gaHWCursor32x32 = 0x00000002,
 gaHWCursorBlackBackground = 0x00000004,
 gaSlow24bpp = 0x00000008,
 gaSlow32bpp = 0x00000010,
 gaBrokenLines = 0x00000020,
 gaNoDDCBIOS = 0x00000040,
 gaNoWriteCombine = 0x00000080,
 gaNoInterlacedCursor = 0x00000100,
 gaHWCursorBlackAndWhite8bpp = 0x00000200,
 gaNoLCDSwitching = 0x00000400,
 gaNoLCDExpandCursor = 0x00000800,
 gaUsesBIOS = 0x00001000,
 gaNeedFullBIOS = 0x00002000,
 gaNeedContiguousFlipBuffers = 0x00004000,
 gaNeed3DTiledAddressing = 0x00008000,
 gaNoWHQLTransparentBlit = 0x00010000
 } GA_WorkAroundsFlagsType

Prototype In
snap/graphics.h

Description
Flags for the WorkArounds member of the GA_devCtx structure. These flags define
conditions for uncommon hardware bugs that can't easily be handled via the generic
SNAP Graphics information reporting mechanism. Any code that calls the SNAP
Graphics hardware drivers directly must be aware of these workarounds and how to
deal with them. However the SNAP Graphics Software Reference Rasteriser knows how
to deal with all currently known bugs, so application developers should use the
reference rasteriser at all times for maximum compatibility with new hardware drivers.

The gaSlowBltSys flag indicates that the hardware BitBltSys function is faster than a
direct linear framebuffer software blit. Most modern hardware can do a software blit as
fast or faster than using the hardware, but some hardware can be faster than a pure
software blit. This is only true when the mix mode is GA_REPLACE_MIX, since
software reads from the framebuffer over the PCI bus are terribly slow.

The gaHWCursor32x32 flag indicates that the hardware only supports a 32x32 hardware
cursor, while the SNAP Graphics specification implements an interface for 64x64
hardware cursors. SNAP Graphics drivers will still implement hardware cursor support
for hardware that only supports a 32x32 cursor, however this flag will be set. If the high
level operating system drivers require a cursor larger than 32x32, then this flag should
be checked and a software cursor used in it's place when this is the case.

The gaSlow24bpp flag indicates that although the 24bpp display modes are accelerated,
they are only partically accelerated. Hence if there is an equiavlent 32bpp display mode,
that most should be used in preference to the 24bpp display mode if possible.

SciTech SNAP, Graphics Architecture 351

Graphics Device Driver Reference

The gaSlow32bpp flag indicates that although the 32bpp display modes are accelerated,
they are only partically accelerated. Hence if there is an equiavlent 24bpp display mode,
that most should be used in preference to the 32bpp display mode if possible.

The gaBrokenLines flag indicates that the hardware line drawing produces slightly
different pixels than the software reference rasterizer and cannot be made to produce
correct pixels. For this reason, conformance testing for line drawing will be skipped on
this hardware.

The gaNoDDCBIOS flag is an internal flag to indicate that the card does not have DDC
BIOS support, and hence we should not attempt to use the DDC BIOS functions to read
the EDID for legacy devices.

The gaNoWriteCombine flag is an internal flag to indicate that the graphics chipset does
not work properly when write combining is enabled for later processors. If write
combining is used, it may cause the system to lock or hang.

The gaNoInterlacedCursor flag is an internal flag to indicate that the graphics chipset
does not properly handle hardware cursors in interlaced display modes. Hence a
software cursor should be used instead for these modes.

The gaNoLCDSwitching flag is set if the SetOptions function does not properly
implement LCD/CRT switching. This is usually set for situations where the BIOS is not
working properly, and it will be up to the user to use the function keys on the laptop to
do the switching.

The gaNoLCDExpandCursor flag is set if the hardware does not support the hardware
cursor correctly in LCD panel expansion modes. Hence a software mouse cursor should
be used instead.

The gaUsesBIOS flag is set if the driver internally uses the BIOS for mode sets. This is
mostly a flag to let the OS/2 driver know that it does not need to implement BIOS
specific hacks that can slow down mode switching as the BIOS is already being used
internally in the drivers. The BIOS is generally only used for laptop support and for
legacy drivers where there is not enough information available to work without the
BIOS.

Members
gaSlowBltSys Software is slower than hardware for

GA_REPLACE_MODE
gaHWCursor32x32 The hardware cursor is only 32x32 in size
gaHWCursorBlackBackground The hardware cursor requires that the

background color always be black (0's)
gaSlow24bpp The 24bpp modes are only partially

accelerated
gaSlow32bpp The 32bpp modes are only partially

accelerated
gaBrokenLines The hardware line drawing is not

SciTech SNAP, Graphics Architecture 352

Graphics Device Driver Reference

conformant
gaNoDDCBIOS Card does not have DDC BIOS support
gaNoWriteCombine Card does not support write combining
gaNoInterlacedCursor HW cursor in interlaced modes is broken
gaHWCursorBlackAndWhite8bpp The hardware cursor in 8bpp is always

black and white and cannot be changed.
gaNoLCDSwitching This flag is set if LCD switching does not

work
gaNoLCDExpandCursor This flag is set to disable cursor in LCD

expand modes
gaUsesBIOS Internally this driver uses the BIOS
gaNeedFullBIOS This driver needs a full BIOS

implementation on OS/2 in order to
function

gaNeedContiguousFlipBuffers Contiguous flip buffers needed for Win32
DirectDraw

gaNeed3DTiledAddressing 3D tiled addressing needed for Win32
DirectDraw

gaNoWHQLTransparentBlit Chipset does not support WHQL style
transparent blits.

SciTech SNAP, Graphics Architecture 353

Graphics Device Driver Reference

GA_blendFuncType

Declaration
typedef enum {
 gaBlendNone,
 gaBlendZero,
 gaBlendOne,
 gaBlendSrcColor,
 gaBlendOneMinusSrcColor,
 gaBlendSrcAlpha,
 gaBlendOneMinusSrcAlpha,
 gaBlendDstAlpha,
 gaBlendOneMinusDstAlpha,
 gaBlendDstColor,
 gaBlendOneMinusDstColor,
 gaBlendSrcAlphaSaturate,
 gaBlendConstantColor,
 gaBlendOneMinusConstantColor,
 gaBlendConstantAlpha,
 gaBlendOneMinusConstantAlpha,
 gaBlendSrcAlphaFast,
 gaBlendConstantAlphaFast
 } GA_blendFuncType

Prototype In
snap/graphics.h

Description
Flags for 2D alpha blending functions supported by the SNAP Graphics drivers. The
values in here define the the alpha blending functions passed to the srcBlendFunc and
dstBlendFunc parameters ofo the SetBlendFunc function. Essentially the blend function
defines how to combine the source and destination pixel color together to get the
resulting destination color during rendering. The formula used for this is defined as:

DstColor = SrcColor * SrcFunc + DstColor * DstFunc;

If the source alpha blending function is set to gaBlendConstantAlpha, the SrcFunc above
becomes:

SrcFunc = ConstAlpha

If the destination alpha blending function is set to gaBlendOneMinusDstAlpha then
DstFunc above becomes:

DstFunc = (1-DstAlpha)

and the final equation becomes (note that each color channel is multiplied individually):

DstColor = SrcColor * ConstAlpha + DstColor * (1-DstAlpha)

Although the above is a completely contrived example, it does illustrate how the
functions defined below combine to allow you to build complex and interesting
blending functions. For simple source alpha transparency, the following formula would
usually be used:

SciTech SNAP, Graphics Architecture 354

Graphics Device Driver Reference

DstColor = SrcColor * SrcAlpha + DstColor * (1-SrcAlpha)

If you wish to use this type of blending and you do not care about the resulting alpha
channel information, you can set the optimised gaBlendSrcAlphaFast blending mode. If
you set both the source and destination blending modes to this value, the above formula
will be used but an optimised fast path will be taken internally to make this run as fast
as possible. For normal blending operations this will be much faster than setting the
above formula manually. If however you need the destination alpha to be preserved,
you will need to use the slower method instead.

For simple constant alpha transparency, the following formula would usually be used:

DstColor = SrcColor * ConstantAlpha + DstColor * (1-ConstantAlpha)

If you wish to use this type of blending and you do not care about the resulting alpha
channel information, you can set the optimised gaBlendConstantAlphaFast blending
mode. If you set both the source and destination blending modes to this value, the above
formula will be used but an optimised fast path will be taken internally to make this run
as fast as possible. For normal blending operations this will be much faster than setting
the above formula manually. If however you need the destination alpha to be preserved,
you will need to use the slower method instead.

Note: All the above equations assume the color values and alpha values are in the range of 0
through 1 in floating point. In reality all blending is done with integer color and alpha
components in the range of 0 to 255, when a value of 255 corresponds to a value of 1.0 in
the above equations.

Note: The constant color value set by a call to SetForeColor, and the constant alpha value set by
a call to SetAlphaValue.

Note: Setting a blending function that uses the destination alpha components is only supported
if the framebuffer currently supports destination alpha. Likewise setting a blending
function that uses source alpha components is only supported if the framebuffer or
incoming bitmap data contains an alpha channel. The results are undefined if these
conditiions are not met.

Note: Enabling source or destination alpha blending overrides the setting of the current mix
mode. Logical mix modes and blending cannot be used at the same time.

Members
gaBlendNone No alpha blending
gaBlendZero Blend factor is always zero
gaBlendOne Blend factor is always one
gaBlendSrcColor Blend factor is source color
gaBlendOneMinusSrcColor Blend factor is 1-source color
gaBlendSrcAlpha Blend factor is source alpha
gaBlendOneMinusSrcAlpha Blend factor is 1-source alpha
gaBlendDstAlpha Blend factor is destination alpha
gaBlendOneMinusDstAlpha Blend factor is 1-destination alpha

SciTech SNAP, Graphics Architecture 355

Graphics Device Driver Reference

gaBlendDstColor Blend factor is destination color
gaBlendOneMinusDstColor Blend factor is 1-destination color
gaBlendSrcAlphaSaturate Blend factor is src alpha saturation
gaBlendConstantColor Blend factor is a constant color
gaBlendOneMinusConstantColor Blend factor is 1-constant color
gaBlendConstantAlpha Blend factor is constant alpha
gaBlendOneMinusConstantAlpha Blend factor is 1-constant alpha
gaBlendSrcAlphaFast Common case of optimised src alpha
gaBlendConstantAlphaFast Common case of optimised constant

alpha

SciTech SNAP, Graphics Architecture 356

Graphics Device Driver Reference

GA_bltFx

Declaration
typedef struct {
 N_uint32 dwSize;
 N_uint32 Flags;
 N_int32 Mix;
 GA_color ColorKeyLo;
 GA_color ColorKeyHi;
 N_int32 SrcBlendFunc;
 N_int32 DstBlendFunc;
 GA_color ConstColor;
 N_uint32 ConstAlpha;
 N_int32 BitsPerPixel;
 GA_pixelFormat *PixelFormat;
 GA_palette *DstPalette;
 GA_palette *SrcPalette;
 GA_color *TranslateVec;
 N_int32 ClipLeft;
 N_int32 ClipTop;
 N_int32 ClipRight;
 N_int32 ClipBottom;
 } GA_bltFx

Prototype In
snap/graphics.h

Description
Hardware 2D BitBltFx information structure. This structure defines the type of BitBlt
operation that is performed by the BitBltFx family of functions. The Flags member
defines the type of BitBlt operation to be performed, and can be any combination of the
supported flags (be sure to call BitBltFxTest first to determine if that combination of
effects is supported).

If mixes are enabled, the Mix member is used to determine the mix operation to apply. If
mixes are not enabled, GA_REPLACE_MIX is assumed (some hardware may not
support mix operations for effects blits).

The ColorKeyLo and ColorKeyHi members define the color key ranges if range based
color keying is selected. If only a single color key is enabled, the ColorKeyLo value is the
value used as the color key. The ColorKeyHi value is inclusive in that it is included in
the color range.

If color conversion is enabled and you are color converting between color index pixel
formats and other pixel formats (including palette remapping), you can optionally pass

If blending is enabled, the SrcBlendFunc, DstBlendFunc and Alpha values are used to
implement the blending operation.

If clipping is enabled, the destination clip rectangle is passed in the ClipLeft, ClipTop,
ClipRight and ClipBottom members. Clipping is most useful for stretching operations,
where clipping in software is problematic.

SciTech SNAP, Graphics Architecture 357

Graphics Device Driver Reference

in a pre-computed translation vector in the TranslateVec member. This will be used in
place of dynamically computing the color translation vector on the fly during the blit
operation, so it is faster in cases where the translation vector is known in advance for a
number of blit operations.

Note: The dwSize member is intended for future compatibility, and should be set to the size of
the structure as defined in this header file. Future drivers will be compatible with older
software by examiming this value.

Note: The ColorKeyLo and ColorKeyHi values are always color values in the format of the
destination surface color depth and pixel format. Ie: if you are color converting an 8bpp
bitmap to a 32bpp destination surface, the color key values will be 32bpp color key values,
not 8bpp color key values.

Members

Mix

pe
pe

Pixel format for the source bitmap
DstPalette

dwSize Set to size of structure in bytes
Flags BitBltFx flags to define the type of BitBlt operation

(GA_BitBltFxFlagsType)
Logical mix operation (if mixes enabled)

ColorKeyLo Color key low value of range (if color keying enabled)
ColorKeyHi Color key high value of range (if color keying enabled)
SrcBlendFunc Src blend function (GA_blendFuncTy)
DstBlendFunc Dst blend function (GA_blendFuncTy)
ConstColor Constant color value for blending if blending enabled
ConstAlpha Constant alpha blend factor (0-255 if blending enabled)
BitsPerPixel Color depth for the source bitmap
PixelFormat

Color index palette for destination (if destination color
index)

SrcPalette Color index palette for source bitmap (if source color
index)

TranslateVec Pre-computed color translation vector for color
conversion

ClipLeft Left coordinate for destination clip rectangle
ClipTop Top coordinate for destination clip rectangle
ClipRight Right coordinate for destination clip rectangle
ClipBottom Bottom coordinate for destination clip rectangle

SciTech SNAP, Graphics Architecture 358

Graphics Device Driver Reference

GA_buf

Declaration
typedef struct {
 N_uint32 dwSize;
 N_int32 Width;
 N_int32 Height;
 N_int32 Stride;
 N_int32 CacheStride;
 N_int32 StartX;
 N_int32 StartY;
 N_int32 Offset;
 N_int32 Flags;
 N_int32 Format;
 N_int32 UseageCount;
 void *Surface;
 void *SurfaceCache;
 void *AppInfo;
 } GA_buf

Prototype In
snap/graphics.h

Note: If the buffer is linear based, the StartX and StartY members will contain a value of -1.

Description
Generic offscreen managed buffer structure, which is used to describe offscreen
managed buffers, and is allocated using the AllocBuffer function. Offscreen managed
buffers are used to allocate and manage offscreen video memory and system memory
buffers.

Note: The dwSize member is intended for future compatibility, and should be set to the size of
the structure as defined in this header file. Future drivers will be compatible with older
software by examiming this value.

Members
dwSize
Width Width of buffer in pixels

Stride
CacheStride
StartX

StartY

Offset
Flags Flags for the buffer (GA_BufferFlagsType)

UseageCount
Surface
SurfaceCache

Set to size of structure in bytes

Height Height of the buffer in pixels
Stride of the buffer in bytes (bytes for a line of data)
Stride of the buffer in system memory buffer cache
Starting X coordinate in framebuffer for buffer (if x,y
based)
Starting Y coordinate in framebuffer for buffer (if x,y
based)
Linear buffer starting address in bytes

Format Internal format indicator for the buffer
Useage count for tracking pageable buffers
Pointer to start of the buffer surface
Pointer to surface cache in system memory (NULL if

SciTech SNAP, Graphics Architecture 359

Graphics Device Driver Reference

uncached)
AppInfo

Pointer to application data if necessary

SciTech SNAP, Graphics Architecture 360

Graphics Device Driver Reference

GA_buffer

Declaration
typedef struct {
 N_uint32 dwSize;
 N_int32 Offset;
 N_int32 Stride;
 N_int32 Width;
 N_int32 Height;
 } GA_buffer

Description

Note: All buffers are in packed pixel format, and the values of the Offset and Stride members

Prototype In
snap/graphics.h

Generic graphics buffer parameter block. This structure defines a generic buffer in
offscreen video memory, and is passed to the driver to make such buffers active
rendering operations. The Offset member is the offset of the start of the buffer in video
memory. The Stride member defines the stride of the buffer in bytes, while the Width
and Height members define the dimensions of the buffer in logical pixel units.

must adhere to the format restrictions defined in the GA_modeInfo structure for the buffer
type being enabled.

Note: The dwSize member is intended for future compatibility, and should be set to the size of
the structure as defined in this header file. Future drivers will be compatible with older
software by examiming this value.

Members

Stride
Width
Height

dwSize Set to size of structure in bytes
Offset Buffer starting address in bytes

Stride of the buffer in bytes (bytes for a line of data)
Width of buffer in pixels
Height of the buffer in pixels

SciTech SNAP, Graphics Architecture 361

Graphics Device Driver Reference

GA_bufferFuncs

Prototype In
snap/graphics.h

Note: Be sure to fill in the dwSize member of this structure when you call GA_queryFunctions

Description
Function group containing all offscreen buffer management function available via the
SNAP API's. This function group is only returned by the 2D reference rasteriser library,
and not by hardware drivers.

to the correct size of the structure at compile time!

SciTech SNAP, Graphics Architecture 362

Graphics Device Driver Reference

AllocBuffer

Allocate a buffer with the requested attributes

Declaration

snap/graphics.h

Width of the buffer in pixels
Height of the buffer in scanlines

GA_buf * GA_bufferFuncs::AllocBuffer(
 N_int32 width,
 N_int32 height,
 N_int32 flags)

Prototype In

Parameters
width
height

Flags used to create the buffer (GA_BufferFlagsType) flags

This function allocates a new buffer and returns it. This only allocates video memory
buffers for drawing and bitmap storage and caching. It is not used to allocate depth
buffers or texture buffers.

reeBuffer tPrimaryBuffer
BitBltBuf

Return Value
Pointer to the allocated buffer, NULL on failure.

Description

SEE ALSO F , Ge , FlipToBuffer, GetFlippableBuffer, LockBuffer,
, SetActiveBuffer

SciTech SNAP, Graphics Architecture 363

Graphics Device Driver Reference

BitBltBuf

Copies pixels from one buffer into the currently active buffer

Declaration
void GA_bufferFuncs::BitBltBuf(
 GA_buf *buf,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 width,
 N_int32 height,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 mix)

Prototype In

buf
Left coordinate of the source rectangle to copy

BitBltPattBuf kedBu
BitBltFxBuf

snap/graphics.h

Parameters
SNAP buffer to blit to the active surface

srcLeft
srcTop Top coordinate of the source rectangle to copy
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
mix Mix code for the copy (GA_mixCodesType)

Description
This function copies a rectangular region from the source buffer to the active drawing
surface, copying from (srcLeft, srcTop, srcLeft+width-1, srcTop+height-1) in the source
buffer to (dstLeft, dstTop) in the active buffer. The specified mix is used to combine the
pixels in the active buffer. This function will also correctly handle cases of overlapping
regions if the source buffer is the same as the active buffer.

See Also
, BitBltColorPattBuf, SrcTransBltBuf, DstTransBltBuf, BitBltPlaneMas f,

, DrawRectBuf

SciTech SNAP, Graphics Architecture 364

Graphics Device Driver Reference

BitBltColorPattBuf

Copies pixels from one buffer into the currently active buffer, applying a color 8x8
pattern

Declaration
void GA_bufferFuncs::BitBltColorPattBuf(
 GA_buf *buf,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 width,
 N_int32 height,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 rop3)

Prototype In
snap/graphics.h

Parameters
buf SNAP buffer to blit to the active surface
srcLeft Left coordinate of the source rectangle to copy
srcTop Top coordinate of the source rectangle to copy
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
rop3 ROP3 code for the copy (GA_rop3Cod) esType

BitBltBuf tBltPattBuf u sBltBuf kedBuf
BitBltFxBuf

Description
This function copies a rectangular region from the source buffer to the active drawing
surface, copying from (srcLeft, srcTop, srcLeft+width-1, srcTop+height-1) in the source
buffer to (dstLeft, dstTop) in the active buffer. The specified rop3 code is used to
combine the pixels in the active buffer, along the currently active 8x8 color pattern.

See Also
, Bi , SrcTransBltB f, DstTran , BitBltPlaneMas ,

, DrawRectBuf

SciTech SNAP, Graphics Architecture 365

Graphics Device Driver Reference

BitBltFxBuf

Copies pixels from one buffer into the currently active buffer while stretching or
shrinking to fit the destination

Declaration
void GA_bufferFuncs::BitBltFxBuf(
 GA_buf *buf,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 srcWidth,
 N_int32 srcHeight,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 dstWidth,
 N_int32 dstHeight,
 GA_bltFx *fx)

Prototype In
snap/graphics.h

Parameters
buf SNAP buffer to blit to the active surface
srcLeft Left coordinate of the source rectangle to copy
srcTop Top coordinate of the source rectangle to copy
srcWidth Width of the source rectangle in pixels
srcHeight Height of the source rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
dstWidth Width of the destination rectangle in pixels
dstHeight Height of the destination rectangle in scanlines
fx GA_bltFx structure describing the requested effects

Description
This function copies a rectangular region from the source buffer to the currently active
buffer with the optional effects described in the GA_bltFx structure. Currently this
function can perform stretching, source and destination transparency and flipping
depending on what features the underlying hardware supports, with an optional mix
code. This routine will copy the rectangular region from (srcLeft, srcTop,
srcLeft+srcWidth-1, srcTop+srcHeight-1) in the source buffer to (dstLeft, dstTop,
dstLeft+dstWidth-1, dstTop+dstHeight-1) in the current active buffer. Note that the
source and destination rectangle dimensions may be different in, which is the case for
doing a copy with bitmap stretching. If the GA_bltFx structure does not indicate
stretching is in effect, the dstHeight and dstWidth parameters will be ignored and only
the srcWidth and srcHeight parameters will be used.

Note: Some of the features may not be supported at the same time, and it is up to the application
programmer to call the BitBltFxTest function to determine what features are supported
before calling this function. Calling this function with an unsupported set of features will
result in undefined behaviour.

SciTech SNAP, Graphics Architecture 366

Graphics Device Driver Reference

See Also
BitBltBuf tBltPattBuf attBuf RectBu
BitBltFxTest

, Bi , BitBltColorP , SrcTransBltBuf, DstTransBltBuf, Draw f,

SciTech SNAP, Graphics Architecture 367

Graphics Device Driver Reference

BitBltPattBuf

Copies pixels from one buffer into the currently active buffer, applying a mono 8x8
pattern

Declaration
void GA_bufferFuncs::BitBltPattBuf(
 GA_buf *buf,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 width,
 N_int32 height,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 rop3)

Prototype In
snap/graphics.h

Parameters
buf SNAP buffer to blit to the active surface
srcLeft Left coordinate of the source rectangle to copy
srcTop Top coordinate of the source rectangle to copy
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
rop3 ROP3 code for the copy (GA_rop3Cod) esType

BitBltBuf attBuf TransBltBuf MaskedBuf
BitBltFxBuf

Description
This function copies a rectangular region from the source buffer to the active drawing
surface, copying from (srcLeft, srcTop, srcLeft+width-1, srcTop+height-1) in the source
buffer to (dstLeft, dstTop) in the active buffer. The specified rop3 code is used to
combine the pixels in the active buffer, along the currently active 8x8 monochrome
pattern.

See Also
, BitBltColorP , SrcTransBltBuf, Dst , BitBltPlane ,

, DrawRectBuf

SciTech SNAP, Graphics Architecture 368

Graphics Device Driver Reference

BitBltPlaneMaskedBuf

Copies pixels from one buffer into the currently active buffer while stretching or
shrinking to fit the destination

Declaration
void GA_bufferFuncs::BitBltPlaneMaskedBuf(
 GA_buf *buf,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 width,
 N_int32 height,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_uint32 planeMask)

Prototype In
snap/graphics.h

Parameters
buf SNAP buffer to blit to the active surface
srcLeft Left coordinate of the source rectangle to copy
srcTop Top coordinate of the source rectangle to copy
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
planeMask 8-bit plane mask to use for the copy

Description
This function copies a rectangular region from the source buffer to the currently active
buffer. This routine will copy a rectangular region from (srcLeft, srcTop, srcLeft+width-
1, srcTop+height-1) in the source buffer to (dstLeft, dstTop) in the currently active
buffer, using the specified plane mask. The plane mask is used to determine which bits
in the destination pixels will be affected by the copy. Each bit in the plane mask is used
to mask out a bit in the destination pixel values, and where a bit is a 1 the destination bit
comes from the source pixel while where a bit is 0 the destination bit is left unchanged.

See Also
BitBltBuf tBltPattBuf attBuf f
DrawRectBuf

, Bi , BitBltColorP , SrcTransBltBuf, DstTransBltBuf, BitBltFxBu ,

SciTech SNAP, Graphics Architecture 369

Graphics Device Driver Reference

DrawRectBuf

Draws a solid filled rectangle with specific color and mix

Declaration
void GA_bufferFuncs::DrawRectBuf(
 GA_buf *buf,
 N_int32 left,
 N_int32 top,
 N_int32 width,
 N_int32 height,
 GA_color color,
 N_int32 mix)

Prototype In
snap/graphics.h

Parameters
buf SNAP buffer to draw to
left Left coordinate of the rectangle to draw
top Top coordinate of the rectangle to draw
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
color Color to fill the rectangle with
mix Mix to fill the rectangle with

Description
This function is used to draw a rectangle in the specified color and mix to a specific
buffer. This function is useful when a buffer needs to be cleared to a solid color, but it is
not the currenty active buffer. Using this function avoids the overhead of switching the
currently active buffer and then using the regular Dr functions. awRect

BitBltBuf
See Also

SciTech SNAP, Graphics Architecture 370

Graphics Device Driver Reference

DstTransBltBuf

Copies pixels from one buffer into the currently active buffer, with destination color key
transparency

Declaration
void GA_bufferFuncs::DstTransBltBuf(
 GA_buf *buf,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 width,
 N_int32 height,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 mix,
 GA_color transparent)

Prototype In
snap/graphics.h

Parameters
buf SNAP buffer to blit to the active surface
srcLeft Left coordinate of the source rectangle to copy
srcTop Top coordinate of the source rectangle to copy
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
mix Mix code for the copy (GA_mixCodesType)
transparent Transparent color for the blit

Description
This function copies a rectangular region from the source buffer to the active drawing
surface, copying from (srcLeft, srcTop, srcLeft+width-1, srcTop+height-1) in the source
buffer to (dstLeft, dstTop) in the active buffer. The specified mix is used to combine the
pixels in the active buffer along with destination color key transparency.

The transparent color passed will be used to mask out pixels in the destination bitmap
from being written. Where a pixel in the destination bitmap matches the transparent
color, the pixel will be written to the destination bitmap.

Note: Although you can achieve the same effect of this routine using the generic BitBltBufFx
function, this function is provided separately as it is usually a workhorse function for
sprite based game applications and needs to be as efficient as possible.

See Also
BitBltBuf tBltPattBuf attBuf skedBuf
BitBltFxBuf

, Bi , BitBltColorP , SrcTransBltBuf, BitBltPlaneMa ,
, DrawRectBuf

SciTech SNAP, Graphics Architecture 371

Graphics Device Driver Reference

FlipToBuffer

Makes a flippable buffer visible to the user

Declaration
void GA_bufferFuncs::FlipToBuffer(
 GA_buf *buf,
 N_int32 waitVRT)

Prototype In
snap/graphics.h

Parameters
buf SNAP buffer to make visible for display
waitVRT Flags how to wait for vertical retraces

(GA_M) akeVisibleBufferFlagsType

GetFlipStatus

SetActiveBuffer r

Description
This function makes the passed in buffer visible for the active display. The buffer does
not be come visible immediately, but will become visible on the next vertical retrace. The
waitVRT flag however determines how the function will wait for the vertical retrace
when programming flipping to the visible buffer. The values you can pass in are defined
in the GA_MakeVisibleBufferFlagsType enumeration.

If you call this function with waitVRT set to gaTripleBuffer, you can later call the
 function to determine if the visible buffer flip has occurred yet or not.

See Also
, FlipToStereoBuffe , GetFlipStatus, WaitTillFlipped

SciTech SNAP, Graphics Architecture 372

Graphics Device Driver Reference

FlipToStereoBuffer

Makes a stereo flippable buffer pair visible to the user

Declaration
void GA_bufferFuncs::FlipToStereoBuffer(
 GA_buf *left,
 GA_buf *right,
 N_int32 waitVRT)

Prototype In
snap/graphics.h

Parameters
left SNAP buffer to make visible for the left eye
right SNAP buffer to make visible for the right eye
waitVRT Flags how to wait for vertical retraces

(GA_M) akeVisibleBufferFlagsType

GetFlipStatus

SetActiveBuffer llFlipped

Description
This function makes the passed in stereo buffers visible for the active display in stereo
mode. If stereo mode is enabled, the left and right buffers are enabled for stereo flipping,
alternating between the left and right buffers every vertical retrace period. If stereo is
not enabled, the visible buffer becomes the left buffer and the right buffer value is
ignored. The waitVRT flag however determines how the function will wait for the
vertical retrace when programming flipping to the visible buffer. The values you can
pass in are defined in the GA_MakeVisibleBufferFlagsType enumeration.

If you call this function with waitVRT set to gaTripleBuffer, you can later call the
 function to determine if the visible buffer flip has occurred yet or not.

See Also
, FlipToBuffer, GetFlipStatus, WaitTi

SciTech SNAP, Graphics Architecture 373

Graphics Device Driver Reference

FreeBuffer

Destroys a buffer and frees the memory associated with it

Declaration
ibool GA_bufferFuncs::FreeBuffer(
 GA_buf *buf)

Prototype In
snap/graphics.h

Parameters
buf Buffer to destroy

Return Value
True on success, false on failure.

Description
This function destroys a SNAP buffer, and frees all resources associated with the buffer.

SEE ALSO AllocBuffer

SciTech SNAP, Graphics Architecture 374

Graphics Device Driver Reference

GetClipper

Returns the currently active clipper for a buffer

Declaration
GA_clipper * GA_bufferFuncs::GetClipper(
 GA_buf *buf)

Prototype In
snap/graphics.h

Parameters
buf SNAP buffer to draw to

Return Value
Pointer to currently active clipper, NULL if none assigned.

Description
This function is used obtain a pointer to the currently active clipper object for the buffer.
If no clipper object has been attached to the buffer, this function will return NULL (by
default all buffer objects are created with no clipper objects attached to them).

See Also
BitBltBuf, GetClipper

SciTech SNAP, Graphics Architecture 375

Graphics Device Driver Reference

GetFlipStatus

Returns the status of the last scheduled buffer flip.

Declaration
int GA_bufferFuncs::GetFlipStatus(void)

Prototype In
snap/graphics.h

Return Value
0 if flip has not occured, not 0 if it has

Description
This function updates returns the flip status for the currently pending flip operation. 1
means it has been flipped, 0 means it has not yet been flipped.

See Also
SetActiveBuffer er aitTillFlipped, FlipToBuffer, FlipToStereoBuff , W

SciTech SNAP, Graphics Architecture 376

Graphics Device Driver Reference

GetFlippableBuffer

Returns a pointer to the requested flippable display buffer

Declaration
GA_buf * GA_bufferFuncs::GetFlippableBuffer(
 N_int32 index)

Prototype In
snap/graphics.h

Parameters
index Index of the flippable buffer to obtain the address of

Return Value
Pointer to specified flippable buffer, or NULL if not such buffer.

Description
This function returns a pointer to the flippable buffer with the specified index in the
flippable buffer table. These buffer pointers can then be used with the S
and FlipToB functions to implement hardware page flipping.

etActiveBuffer
uffer

AllocBuffer maryBuffer veBuffer
See Also

, GetPri , SetActi , FlipToBuffer

SciTech SNAP, Graphics Architecture 377

Graphics Device Driver Reference

GetPrimaryBuffer

Returns a pointer to the primary buffer display buffer

Declaration
GA_buf * GA_bufferFuncs::GetPrimaryBuffer(void)

Prototype In
snap/graphics.h

Return Value
Pointer to the primary display buffer, NULL if no primary buffer.

Description
This function returns a pointer to the primary display buffer, which is always the first
buffer on the fixed heap for regular display output.

See Also
AllocBuffer, FlipToBuffer, SetActiveBuffer, GetFlippableBuffer

SciTech SNAP, Graphics Architecture 378

Graphics Device Driver Reference

InitBuffers

Initialises the buffer manager functions

Declaration
ibool GA_bufferFuncs::InitBuffers(
 N_int32 numBuffers,
 N_uint32 flags,
 GA_softStereoFuncs *stereo)

Prototype In
snap/graphics.h

Parameters
numBuffers Number of flippable buffers to allocate
flags Extra flags for allocating buffers (GA_BufferFlags) Type

AllocBuffer maryBuffer tiveBuffer

stereo Software stereo functions, or NULL for non-stereo mode

Return Value
True on success, false on failure.

Description
This function initialises the buffer manager, and allocates the primary buffer and all
related flippable buffers (for a total of numBuffers buffers). If any of the buffers cannot
be allocated, this function will return false. If the stereo parameter is not NULL, stereo
mode is enabled using the passed in software stereo functions.

See Also
, GetPri , FlipToBuffer, SetAc , BitBltBuf

SciTech SNAP, Graphics Architecture 379

Graphics Device Driver Reference

LockBuffer

Locks a buffer for direct memory access

Declaration
N_uint32 GA_bufferFuncs::LockBuffer(
 GA_buf *buf)

Prototype In
snap/graphics.h

Parameters
buf Buffer to lock

Return Value
Physical address of locked buffer in memory, 0 if a system memory buffer.

Description
This function locks a buffer so that an application can begin drawing directly on the
surface memory. You must call this function before you draw directly on the bitmap
surface! After this function is called, the GA_buf Surface member will be set to the virtual
address of the buffer. Prior to calling this function and after calling Unloc , the
Surface member will be set to NULL (indicating you should not access the memory!).

kBuffer

The return value from this function is the physical start address of the buffer in memory,
which can be used to program DMA operations from other hardware devices directly
into the video memory for the buffer. This is useful for frame grabber devices so that the
resulting frame from the frame grabber device can be blitted to the visual display as
quickly as possible (much quicker than if it was DMA'ed into system memory).

If the buffer is a system memory buffer, the return value from this function will be 0,
since we cannot obtain the physical starting address of a system memory buffer.

SEE ALSO UnlockBuffer

SciTech SNAP, Graphics Architecture 380

Graphics Device Driver Reference

SetActiveBuffer

Makes a buffer the active buffer for all rendering functions

Declaration
N_int32 GA_bufferFuncs::SetActiveBuffer(
 GA_buf *buf)

Prototype In
snap/graphics.h

Parameters
buf SNAP buffer to make active for rendering

Return Value
True on success, false on failure.

Description
This function makes the passed in buffer the active buffer for all subsequent rendering
operations. You must call this function in order to enable hardware rendering to the
buffer. Once this function is called, all hardware rendering functions in the

 structure will go to the newly active buffer. GA_2DRenderFuncs

lipToBuffer maryBufferSEE ALSO F , GetPri , GetFlipBuffer, AllocBuffer

SciTech SNAP, Graphics Architecture 381

Graphics Device Driver Reference

SetClipper

Set the currently active clipper for a buffer

Declaration
void GA_bufferFuncs::SetClipper(
 GA_buf *buf,
 GA_clipper *clipper)

Prototype In
snap/graphics.h

Parameters
buf SNAP buffer to draw to
clipper New clipper to make the active clipper for the buffer

Return Value
Pointer to currently active clipper, NULL if none assigned.

Description
This function is used set the currently active clipper object for a buffer. Once a clipper
object has been attached to a buffer, all rendering functions will be clipped to the
dimensions of the attached clipper object. This functionality is only presently supported
by the DirectX SNAP emulation driver, specifially to allow rendering directly in a
window on the desktop.

See Also
BitBltBuf, GetClipper

SciTech SNAP, Graphics Architecture 382

Graphics Device Driver Reference

SrcTransBltBuf

Copies pixels from one buffer into the currently active buffer, with source color key
transparency

Declaration
void GA_bufferFuncs::SrcTransBltBuf(
 GA_buf *buf,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 width,
 N_int32 height,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 mix,
 GA_color transparent)

Prototype In
snap/graphics.h

Parameters
buf SNAP buffer to blit to the active surface
srcLeft Left coordinate of the source rectangle to copy
srcTop Top coordinate of the source rectangle to copy
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
mix Mix code for the copy (GA_mixCodesType)
transparent Transparent color for the blit

Description
This function copies a rectangular region from the source buffer to the active drawing
surface, copying from (srcLeft, srcTop, srcLeft+width-1, srcTop+height-1) in the source
buffer to (dstLeft, dstTop) in the active buffer. The specified mix is used to combine the
pixels in the active buffer along with source color key transparency.

The transparent color passed will be used to mask out pixels in the source bitmap from
being written to the destination area. Where a pixel in the source bitmap matches the
transparent color, the pixel will not be written to the destination bitmap.

Note: Although you can achieve the same effect of this routine using the generic BitBltBufFx
function, this function is provided separately as it is usually a workhorse function for
sprite based game applications and needs to be as efficient as possible.

See Also
BitBltBuf tBltPattBuf attBuf skedBuf
BitBltFxBuf

, Bi , BitBltColorP , DstTransBltBuf, BitBltPlaneMa ,
, DrawRectBuf

SciTech SNAP, Graphics Architecture 383

Graphics Device Driver Reference

StretchBltBuf

Copies pixels from one buffer into the currently active buffer while stretching or
shrinking to fit the destination

Declaration
void GA_bufferFuncs::StretchBltBuf(
 GA_buf *buf,
 N_int32 srcLeft,
 N_int32 srcTop,
 N_int32 srcWidth,
 N_int32 srcHeight,
 N_int32 dstLeft,
 N_int32 dstTop,
 N_int32 dstWidth,
 N_int32 dstHeight,
 N_int32 doClip,
 N_int32 clipLeft,
 N_int32 clipTop,
 N_int32 clipRight,
 N_int32 clipBottom,
 N_int32 mix)

Prototype In
snap/graphics.h

Parameters
buf SNAP buffer to blit to the active surface
srcLeft Left coordinate of the source rectangle to copy
srcTop Top coordinate of the source rectangle to copy
srcWidth Width of the source rectangle in pixels
srcHeight Height of the source rectangle in scanlines
dstLeft Left coordinate of destination
dstTop Top coordinate of destination
dstWidth Width of the destination rectangle in pixels
dstHeight Height of the destination rectangle in scanlines
doClip True if the blit should be clipped
clipLeft Left coordinate of clip rectangle
clipTop Top coordinate of clip rectangle
clipRight Right coordinate of clip rectangle
clipBottom Bottom coordinate of clip rectangle
mix Mix code for the copy (GA_mixCodesType)

Description
This function copies a rectangular region of source buffer to the currently active buffer
with either stretching or shrinking. This routine will copy the rectangular region of from
(srcLeft, srcTop, srcLeft+srcWidth-1, srcTop+srcHeight-1) in the source buffer to
(dstLeft, dstTop, dstLeft+dstWidth-1, dstTop+dstHeight-1) in the active buffer. Note
that the source and destination rectangle dimensions may be different in, which is the
case for doing a copy with bitmap stretching or shrinking.

SciTech SNAP, Graphics Architecture 384

Graphics Device Driver Reference

If the doClip parameter is true, then the output of the stretch function will be clipped
against the passed in destination clip rectangle.

See Also
BitBltBuf tBltPattBuf attBuf
BitBltPlaneMaskedBuf

, Bi , BitBltColorP , SrcTransBltBuf, DstTransBltBuf,
, BitBltFxBuf, DrawRectBuf

SciTech SNAP, Graphics Architecture 385

Graphics Device Driver Reference

UnlockBuffer

Unlocks a buffer after direct memory access

Declaration
void GA_bufferFuncs::UnlockBuffer(
 GA_buf *buf)

Prototype In
snap/graphics.h

Parameters
buf SNAP buffer to unlock

Description
This function unlocks a buffer after the application has completed direct surface access
on the buffer.

SEE ALSO L ockBuffer

SciTech SNAP, Graphics Architecture 386

Graphics Device Driver Reference

UpdateCache

Updates the system cache from the video memory buffer contents

Declaration
void GA_bufferFuncs::UpdateCache(
 GA_buf *buf)

Prototype In
snap/graphics.h

Parameters
buf SNAP buffer to copy into system memory cache

Description
This function is used to update the system memory buffer cache by copying the contents
of the video memory buffer into the system memory cache. This is mostly useful if you
are using cached buffers with a system memory shadow, and you have updated the
video memory buffer and need to flush the changes to the system memory cache. This
operation is not particularly fast (video memory reads are always slow), but if you need
to keep the system memory cache up to date this is the way to do it.

See Also
UpdateFromCache, BitBltBuf

SciTech SNAP, Graphics Architecture 387

Graphics Device Driver Reference

UpdateFromCache

Updates the video memory buffer contents from system memory cache

Declaration
void GA_bufferFuncs::UpdateFromCache(
 GA_buf *buf)

Prototype In
snap/graphics.h

Parameters
buf SNAP buffer to copy from system memory cache

Description
This function updates the video memory buffer by copying the contents of the system
memory cache buffer into the video memory buffer. This is useful if you need to replace
the buffer contents with new values, or you need to do software rendering on the buffer.
Doing the rendering on the system memory buffer will be faster, and when you are done
this function can be used to update the video memory copy of the buffer. Unless you
need to specifically do some drawing in hardware, updating the system memory cache
and using this function will be faster than updating video memory and using

. UpdateCache

UpdateCache
See Also

, BitBltBuf

SciTech SNAP, Graphics Architecture 388

Graphics Device Driver Reference

WaitTillFlipped

Waits until the last scheduled buffer flip occurs

Declaration
void GA_bufferFuncs::WaitTillFlipped(void)

Prototype In
snap/graphics.h

Description
This function waits until the pending flip operation has completed and the visible
display page has changed before returning.

See Also
SetActiveBuffer er, FlipToBuffer, FlipToStereoBuff , GetFlipStatus

SciTech SNAP, Graphics Architecture 389

Graphics Device Driver Reference

GA_busType

Declaration
typedef enum {
 gaUnknownBus = 0,
 gaISABus = 1,
 gaMCABus = 2,
 gaVLBBus = 3,
 gaPCIBus = 4,
 gaAGPBus = 5
 } GA_busType

Prototype In
snap/graphics.h

Description
This enumeration defines the values stored in the BusType field of the GA_devCtx
structure.

Members
gaUnknownBus Bus type is not known
gaISABus Device is an ISA bus device
gaMCABus Device is a Micro-Channel bus device
gaVLBBus Device is a VESA Local Bus device
gaPCIBus Device is a PCI bus device
gaAGPBus Device is an AGP bus device

SciTech SNAP, Graphics Architecture 390

Graphics Device Driver Reference

GA_certifyChipInfo

Declaration
typedef struct {
 N_uint32 dwSize;
 char ChipsetName[30];
 N_uint16 CertifyVersion;
 char CertifiedDate[19];
 N_uint8 CertifyFlags;
 } GA_certifyChipInfo

Prototype In
snap/graphics.h

Description
Structure pointed to be the GA_certifyInfo structure, which contains certification
information about the specific chipsets in the device driver.

Note: The dwSize member is intended for future compatibility, and should be set to the size of
the structure as defined in this header file. Future drivers will be compatible with older
software by examiming this value.

Members
dwSize Set to size of structure in bytes
ChipsetName Name of graphics chipset name
CertifyVersion Version of certification program used
CertifiedDate Date that the card was certified
CertifyFlags Flags for certification information

SciTech SNAP, Graphics Architecture 391

Graphics Device Driver Reference

GA_certifyInfo

Declaration
typedef struct {
 N_uint32 dwSize;
 char Signature[20];
 char BuildDate[30];
 char MaxCertifiedChips;
 char NumCertifiedChips;
 GA_certifyChipInfo *CertifiedCards;
 } GA_certifyInfo

Prototype In
snap/graphics.h

Description
Structure returned by GetCertifyInfo, which contains configuration information about
the certification status of the drivers.

Note: The dwSize member is intended for future compatibility, and should be set to the size of
the structure as defined in this header file. Future drivers will be compatible with older
software by examiming this value.

Members
dwSize Set to size of structure in bytes
Signature Signature to identify certification information
BuildDate String representation of the build date for driver
MaxCertifiedCards Maximum number of certified chipsets in driver
NumCertifiedCards Number of certified chipsets
CertifiedCards List of all certified cards in the driver

SciTech SNAP, Graphics Architecture 392

Graphics Device Driver Reference

GA_clipper

Declaration
typedef void GA_clipper

Prototype In
snap/graphics.h

Description
Defines the fundamental type for a SNAP Graphics clipper object. The internals of this
object are completely implementation dependant so we simply define this type as a void
pointer as the application code should never care about the internals of a GA_clipper
object.

SciTech SNAP, Graphics Architecture 393

Graphics Device Driver Reference

GA_clipperFuncs

Prototype In
snap/graphics.h

Description
Function group containing all offscreen buffer management window clipper functions
available via the SNAP API's. These functions manage the creation and destruction of
complex clip regions for handling clipping to window manager windows. These
functions manage translation of OS specific clip regions to SciTech SNAP Graphics
complex clip regions. This function group is only returned by the 2D reference rasteriser
library, and not by hardware drivers.

Note: Be sure to fill in the dwSize member of this structure when you call GA_queryFunctions
to the correct size of the structure at compile time!

SciTech SNAP, Graphics Architecture 394

Graphics Device Driver Reference

CreateClipper

Creates a clipper object for a specific window manager window

Declaration
GA_clipper * GA_clipperFuncs::CreateClipper(
 PM_HWND hwnd)

Prototype In
snap/graphics.h

Parameters
hwnd Window handle to create the clipper for

Return Value
Pointer to the allocated clipper, NULL on failure.

Description
This function is used to create a clipper object that is associated with a window manager
window handle. This clipper object will track the visible clip lists associated with the
window handle, and when attached to a buffer will cause all output to that buffer to he
clipped to the currently active visible clip list for the window.

This function is presently only implemented in the SNAP DirectX emulation driver, and
is intended to allow the SNAP to draw directly into windows on the desktop.

See Also
IsClipListChanged pList, GetCli , DestroyClipper

SciTech SNAP, Graphics Architecture 395

Graphics Device Driver Reference

DestroyClipper

Destroys a clipper object

Declaration
void GA_clipperFuncs::DestroyClipper(
 GA_clipper *clipper)

Prototype In
snap/graphics.h

Parameters
clipper Clipper object to destroy

Description
This function destroys a previously allocated clipper object, freeing all memory
associated with the clipper object.

This function is presently only implemented in the SNAP DirectX emulation driver, and
is intended to allow the SNAP to draw directly into windows on the desktop.

See Also
CreateClipper hanged, IsClipListC , GetClipList

SciTech SNAP, Graphics Architecture 396

Graphics Device Driver Reference

GetClipList

Returns a list of rectangles representing the complex clip list

Declaration
GA_rect * GA_clipperFuncs::GetClipList(
 GA_clipper *clipper,
 N_int32 *count)

Prototype In
snap/graphics.h

Parameters
clipper Clipper object to test
count Number of rectangles in clip list

Return Value
Pointer to a list of rectangles in the clip list.

Description
This function returns the complex clip list for the associated clipper if the window
requires complex clipping. If the region does not require complex clipping, this function
will return a single rectangle and return a value of 1 in the count parameter. The
complex clip list is just a list of rectangles, and the number of rectangles in the list is
returned in the count parameter.

This function is presently only implemented in the SNAP DirectX emulation driver, and
is intended to allow the SNAP to draw directly into windows on the desktop.

See Also
CreateClipper hanged royClipper, IsClipListC , Dest

SciTech SNAP, Graphics Architecture 397

Graphics Device Driver Reference

IsClipListChanged

Determines if the window clip list has changed

Declaration
ibool GA_clipperFuncs::IsClipListChanged(
 GA_clipper *clipper)

Prototype In
snap/graphics.h

Parameters
clipper Clipper object to test

Return Value
True if the window clip list has changed, false if not.

Description
This function is used to determine if the window clip list has changed for a clipper object
since the last time this function was called.

This function is presently only implemented in the SNAP DirectX emulation driver, and
is intended to allow the SNAP to draw directly into windows on the desktop.

Note: This function always returns true the first time it is called.

See Also
CreateClipper, GetClipList, DestroyClipper

SciTech SNAP, Graphics Architecture 398

Graphics Device Driver Reference

GA_color

Declaration
typedef N_uint32 GA_color

Prototype In
snap/graphics.h

Description
Fundamental type definition for a 32-bit color value. The color value is intepreted
differently depending on what graphics mode the system is in, and in 15-bit and above
modes will have the color values packed according to the pixel format information
stored in the GA_modeInfo structure.

SciTech SNAP, Graphics Architecture 399

Graphics Device Driver Reference

GA_colorCursor

Declaration
typedef struct {
 N_uint8 ColorData[2048];
 N_uint8 ANDMask[512];
 GA_palette Palette[16];
 N_uint32 HotX;
 N_uint32 HotY;
 } GA_colorCursor

Prototype In
snap/graphics.h

Description
Hardware 16-color cursor structure. This structure defines a color hardware cursor that
is downloaded to the hardware. The cursor is defined as a 64x64 image with an AND
mask and color data. The definition of the AND mask, cursor data and the pixels that
will appear on the screen is as follows:

AND Color Result
0 0 Transparent (color from screen memory)
0 not 0 Invert (complement of color from screen memory)
1 xx Cursor color data

Hence if the AND mask is a zero the color data should be either 00 to make the pixel
transparent or not 0 to make it the inversion of the screen pixel.

The color data is passed down to the driver as 4-bit packed color index values, along
with a 16-color lookup table containing the real 24-bit RGB color values for the cursor
image. It is up to the calling application to translate and quantise cursor images of
higher color depths down to the format supported by the hardware.

The HotX and HotY members define the hot spot for the cursor, which is the location
where the logical mouse pointer is located in the cursor image. When you click the
mouse, the pixel under the hot-spot is the pixel selected.

Members
ColorData Cursor color data as a 64x64 array of packed 4-bit pixels
ANDMask Cursor AND mask
Palette 16-color palette for cursor image
HotX Cursor X coordinate hot spot
HotY Cursor Y coordinate hot spot

SciTech SNAP, Graphics Architecture 400

Graphics Device Driver Reference

GA_colorCursor256

Declaration
typedef struct {
 N_uint8 ColorData[4096];
 N_uint8 ANDMask[512];
 GA_palette Palette[256];
 N_uint32 HotX;
 N_uint32 HotY;
 } GA_colorCursor256

Prototype In
snap/graphics.h

Description
Hardware 256-color cursor structure. This structure defines a color hardware cursor that
is downloaded to the hardware. The cursor is defined as a 64x64 image with an AND
mask and color data. The definition of the AND mask, cursor data and the pixels that
will appear on the screen is as follows:

AND Color Result
0 0 Transparent (color from screen memory)
0 not 0 Invert (complement of color from screen memory)
1 xx Cursor color data

Hence if the AND mask is a zero the color data should be either 00 to make the pixel
transparent or not 0 to make it the inversion of the screen pixel.

The color data is passed down to the driver as 8-bit packed color index values, along
with a 256-color lookup table containing the real 24-bit RGB color values for the cursor
image. It is up to the calling application to translate and quantise cursor images of
higher color depths down to the format supported by the hardware.

The HotX and HotY members define the hot spot for the cursor, which is the location
where the logical mouse pointer is located in the cursor image. When you click the
mouse, the pixel under the hot-spot is the pixel selected.

Members
ColorData Cursor color data as a 64x64 array of packed 8-bit pixels
ANDMask Cursor AND mask
Palette 256-color palette for cursor image
HotX Cursor X coordinate hot spot
HotY Cursor Y coordinate hot spot

SciTech SNAP, Graphics Architecture 401

Graphics Device Driver Reference

GA_colorCursorRGB

Declaration
typedef struct {
 N_uint8 ColorData[12288];
 N_uint8 ANDMask[512];
 N_uint32 HotX;
 N_uint32 HotY;
 } GA_colorCursorRGB

Prototype In
snap/graphics.h

Description
Hardware 24-bit cursor structure. This structure defines a color hardware cursor that is
downloaded to the hardware. The cursor is defined as a 64x64 image with an AND mask
and color data. The definition of the AND mask, cursor data and the pixels that will
appear on the screen is as follows:

AND Color Result
0 0 Transparent (color from screen memory)
0 not 0 Invert (complement of color from screen memory)
1 xx Cursor color data

Hence if the AND mask is a zero the color data should be either 00 to make the pixel
transparent or not 0 to make it the inversion of the screen pixel.

The color data is passed down to the driver as 24-bit packed RGB color values. It is up to
the calling application to translate cursor images of lower color depths to the format
supported by the hardware.

The HotX and HotY members define the hot spot for the cursor, which is the location
where the logical mouse pointer is located in the cursor image. When you click the
mouse, the pixel under the hot-spot is the pixel selected.

Members
ColorData Cursor color data as a 64x64 array of packed 24-bit RGB

pixels
ANDMask Cursor AND mask
HotX Cursor X coordinate hot spot
HotY Cursor Y coordinate hot spot

SciTech SNAP, Graphics Architecture 402

Graphics Device Driver Reference

GA_colorCursorRGBA

Declaration
typedef struct {
 N_uint8 ColorData[16384];
 N_uint32 HotX;
 N_uint32 HotY;
 } GA_colorCursorRGBA

Prototype In
snap/graphics.h

Description
Hardware 24-bit RGBA alpha blended cursor structure. This structure defines a color
hardware cursor that is downloaded to the hardware. The cursor is defined as a 64x64
24-bit RGBA image with alpha channel. The alpha channel data is used to define the
transparency level for the bitmap, with 0 being fully transparent and 255 being full
opaque. Since the color bitmap data is alpha blended, the is no AND mask for the cursor
image.

The HotX and HotY members define the hot spot for the cursor, which is the location
where the logical mouse pointer is located in the cursor image. When you click the
mouse, the pixel under the hot-spot is the pixel selected.

Members
ColorData Cursor color data as a 64x64 array of packed 24-bit RGBA

pixels
HotX Cursor X coordinate hot spot
HotY Cursor Y coordinate hot spot

SciTech SNAP, Graphics Architecture 403

Graphics Device Driver Reference

GA_colorPattern

Declaration
typedef union {
 GA_colorPattern_1 b1;
 GA_colorPattern_4 b4;
 GA_colorPattern_8 b8;
 GA_colorPattern_16 b16;
 GA_colorPattern_24 b24;
 GA_colorPattern_32 b32;
 } GA_colorPattern

Prototype In
snap/graphics.h

Description
Fundamental type definition for an array element of an 8x8 color bitmap pattern. Each
line in the pattern is represented as an array of packed pixel data. In 8bpp modes there is
8 bytes per line, for 16bpp modes there are 16bytes per line, for 24bpp modes there are
24bytes per line and for 32bpp modes there are 32 bytes per line. Hence the size of the
pattern data is different depending on the color depth currently active.

SciTech SNAP, Graphics Architecture 404

Graphics Device Driver Reference

GA_colorPattern_1

Declaration
typedef struct {
 N_uint8 p[8];
 } GA_colorPattern_1

Prototype In
snap/graphics.h

Description
Fundamental type definition for an array element of an 8x8 color bitmap pattern data for
1bpp modes.

Members
p 8x8 bytes of pattern data

SciTech SNAP, Graphics Architecture 405

Graphics Device Driver Reference

GA_colorPattern_16

Declaration
typedef struct {
 N_uint16 p[8][8];
 } GA_colorPattern_16

Prototype In
snap/graphics.h

Description
Fundamental type definition for an array element of an 8x8 color bitmap pattern data for
16bpp modes.

Members
p 8x8 words of pattern data

SciTech SNAP, Graphics Architecture 406

Graphics Device Driver Reference

GA_colorPattern_24

Declaration
typedef struct {
 N_uint8 p[8][8][3];
 } GA_colorPattern_24

Prototype In
snap/graphics.h

Description
Fundamental type definition for an array element of an 8x8 color bitmap pattern data for
24bpp modes.

Members
p 8x8x3 bytes of pattern data

SciTech SNAP, Graphics Architecture 407

Graphics Device Driver Reference

GA_colorPattern_32

Declaration
typedef struct {
 N_uint32 p[8][8];
 } GA_colorPattern_32

Prototype In
snap/graphics.h

Description
Fundamental type definition for an array element of an 8x8 color bitmap pattern data for
32pp modes.

Members
p 8x8 dwords of pattern data

SciTech SNAP, Graphics Architecture 408

Graphics Device Driver Reference

GA_colorPattern_4

Declaration
typedef struct {
 N_uint8 p[8][4];
 } GA_colorPattern_4

Prototype In
snap/graphics.h

Description
Fundamental type definition for an array element of an 8x8 color bitmap pattern data for
4bpp modes.

Members
p 8x8 bytes of pattern data

SciTech SNAP, Graphics Architecture 409

Graphics Device Driver Reference

GA_colorPattern_8

Declaration
typedef struct {
 N_uint8 p[8][8];
 } GA_colorPattern_8

Prototype In
snap/graphics.h

Description
Fundamental type definition for an array element of an 8x8 color bitmap pattern data for
8bpp modes.

Members
p 8x8 bytes of pattern data

SciTech SNAP, Graphics Architecture 410

Graphics Device Driver Reference

GA_configInfo

Declaration
typedef struct {
 N_uint32 dwSize;
 char ManufacturerName[80];
 char ChipsetName[80];
 char DACName[80];
 char ClockName[80];
 char VersionInfo[80];
 char BuildDate[80];
 char Certified;
 char CertifiedDate[20];
 N_uint16 CertifyVersion;
 } GA_configInfo

Prototype In
snap/graphics.h

Description
Structure returned by GetConfigInfo, which contains configuration information about
the installed graphics hardware.

Note: The dwSize member is intended for future compatibility, and should be set to the size of
the structure as defined in this header file. Future drivers will be compatible with older
software by examiming this value.

Members
dwSize Set to size of structure in bytes
ManufacturerName Name of graphics chipset manufacturer
ChipsetName Name of graphics chipset name
DACName Name of DAC on graphics card
ClockName Name of clock on graphics card
VersionInfo String representation of version and build for driver
BuildDate String representation of the build date for driver
Certified True if the installed device is certified
CertifiedDate Date when the device was certified
CertifyVersion Version of certification program used

SciTech SNAP, Graphics Architecture 411

Graphics Device Driver Reference

GA_cursorFuncs

Prototype In
snap/graphics.h

Description
Function group containing all hardware cursor functions available for the device. These
functions are used to manage the hardware cursor functions for the device, such as
setting the cursor, setting the cursor position and changing the cursor colors.

Note also that this function group is also returned by the 2D reference rasteriser code to
implement software cursor functions when there is no hardware cursor support in the
hardware. Unless you have a specific need to directly manage the hardware cursor, you
should always use the functions provided by the 2D reference rasteriser. The 2D
reference rasteriser will handle any hardware specific limitations for you, defaulting
back to a software cursor when necessary to ensure correct operation.

Note: Be sure to fill in the dwSize member of this structure when you call GA_queryFunctions
to the correct size of the structure at compile time!

SciTech SNAP, Graphics Architecture 412

Graphics Device Driver Reference

BeginAccess

Begin drawing access to the framebuffer to exclude the software cursor image

Declaration
void NAPI GA_cursorFuncs::BeginAccess(
 N_int32 left,
 N_int32 top,
 N_int32 right,
 N_int32 bottom)

Prototype In
snap/graphics.h

Parameters
left Left coordinate of display affected
top Top coordinate of display affected
right Right coordinate of display affected (exclusive)
bottom Bottom coordinate of display affected (exclusive)

Description
This function must be used by the application when the 2d reference rasteriser is using a
software based cursor image. The cursor images are stored in either system memory of
offscreen memory buffers, and either a software or hardware blitter is used to draw the
cursor images on the screen. Since the cursor images are physically drawn on the
display screen, this function must be used to inform the 2d reference rasteriser that the
application is about to draw to a particular location on the screen. The 2d reference
rasteriser will then remove the cursor image from the screen temporarily while the
drawing is taking place if the region being drawn to and the cursor image overlap.

This function is not used when the cursor is implemented entirely in hardware on the
display device. It will also not be provided by hardware drivers, just by the 2d reference
rasteriser library. Optimised applications and shell drivers should disable calls to this
function when a hardware cursor is in use (see the IsHardw function to
determine this at runtime).

areCursor

Note: This function must always be used for all drawing operations, regardless of whether the
drawing is being done in software or hardware or directly by the application program
writing to the framebuffer.

See Also
SetMonoCursor oCursorColor tColorCursor rsor
BeginAccess tColorCursor256 orRGBA rdwareCursor
SetColorCursorRGB

, SetMon , Se , SetCursorPos, ShowCu ,
, EndAccess, Se , SetColorCurs , IsHa ,

SciTech SNAP, Graphics Architecture 413

Graphics Device Driver Reference

EndAccess

End access to the framebuffer for drawing

Declaration
void NAPI GA_cursorFuncs::EndAccess(void)

Prototype In
snap/graphics.h

Description
This function must be used by the application when the 2d reference rasteriser is using a
software based cursor image. This function informs the 2d reference rasteriser that
drawing has completed, and that it may restore the cursor image back to the display
screen at it's original location (if it needed to be hidden).

This function is not used when the cursor is implemented entirely in hardware on the
display device. It will also not be provided by hardware drivers, just by the 2d reference
rasteriser library.

See Also
SetMonoCursor oCursorColor tColorCursor rsor
BeginAccess tColorCursor256 orRGBA rdwareCursor
SetColorCursorRGB

, SetMon , Se , SetCursorPos, ShowCu ,
, EndAccess, Se , SetColorCurs , IsHa ,

SciTech SNAP, Graphics Architecture 414

Graphics Device Driver Reference

IsHardwareCursor

Determines if the current cursor is a hardware cursor or software cursor

Declaration
N_int32 NAPI GA_cursorFuncs::IsHardwareCursor(void)

Prototype In
snap/graphics.h

Description
This function is used to determine if the currently active cursor is implemented in
software or hardware. This function should be called immediately after downloading a
new cursor images via the 2d reference rasteriser library. If the device driver is able to
implement the cursor in hardware, this function will return true. If the 2d reference
rasteriser library has to fall back to software, this function will return false. If this
function does return false, the application program must use the BeginAccess and

 functions to ensure the software cursor images is correctly excluded from the
screen for all drawing operations.
EndAccess

SetMonoCursor oCursorColor tColorCursor rsor
BeginAccess tColorCursor256 orRGBA rdwareCursor
SetColorCursorRGB

This function will not be provided by hardware drivers, only by the 2d reference
rasteriser library.

See Also
, SetMon , Se , SetCursorPos, ShowCu ,

, EndAccess, Se , SetColorCurs , IsHa ,

SciTech SNAP, Graphics Architecture 415

Graphics Device Driver Reference

SetColorCursor

Sets a new 64x64 16-color hardware cursor image.

Declaration
void NAPI GA_cursorFuncs::SetColorCursor(
 GA_colorCursor *cursor)

Prototype In
snap/graphics.h

Parameters
cursor Pointer to an GA_colorCursor structure for the cursor image

Description
This function downloads the specified 16-color cursor definition from the application
into the hardware cursor. The cursor data is passed by the application in the

 format; please see the documentation for this structure for the format of
the data passed to this function.
GA_colorCursor

Note: To pad the cursor definition to 64x64 for cursors that are smaller than 64x64 in size,
simply fill in the remainder of the XORMask and ANDMask with zeroes.

See Also
SetMonoCursor oCursorColor tColorCursor rsor
BeginAccess tColorCursor256 orRGBA rdwareCursor
SetColorCursorRGB

, SetMon , Se , SetCursorPos, ShowCu ,
, EndAccess, Se , SetColorCurs , IsHa ,

SciTech SNAP, Graphics Architecture 416

Graphics Device Driver Reference

SetColorCursor256

Sets a new 64x64 256-color hardware cursor image.

Declaration
void NAPI GA_cursorFuncs::SetColorCursor256(
 GA_colorCursor256 *cursor)

Prototype In
snap/graphics.h

Parameters
cursor Pointer to an GA_colorCursor256 structure for the cursor image

Description
This function downloads the specified 256-color cursor definition from the application
into the hardware cursor. The cursor data is passed by the application in the

 format; please see the documentation for this structure for the format
of the data passed to this function.
GA_colorCursor256

Note: To pad the cursor definition to 64x64 for cursors that are smaller than 64x64 in size,
simply fill in the remainder of the XORMask and ANDMask with zeroes.

See Also
SetMonoCursor oCursorColor tColorCursor rsor
BeginAccess tColorCursor256 orRGBA rdwareCursor
SetColorCursorRGB

, SetMon , Se , SetCursorPos, ShowCu ,
, EndAccess, Se , SetColorCurs , IsHa ,

SciTech SNAP, Graphics Architecture 417

Graphics Device Driver Reference

SetColorCursorRGB

Sets a new 64x64 24-bit color RGB TrueColor hardware cursor image.

Declaration
void NAPI GA_cursorFuncs::SetColorCursorRGB(
 GA_colorCursorRGB *cursor)

Prototype In
snap/graphics.h

Parameters
cursor Pointer to an GA_colorCursorRGB structure for the cursor image

Description
This function downloads the specified 24-bit RGB TrueColor cursor definition from the
application into the hardware cursor. The cursor data is passed by the application in the

 format; please see the documentation for this structure for the
format of the data passed to this function.
GA_colorCursorRGB

Note: To pad the cursor definition to 64x64 for cursors that are smaller than 64x64 in size,
simply fill in the remainder of the XORMask and ANDMask with zeroes.

See Also
SetMonoCursor oCursorColor tColorCursor rsor
BeginAccess tColorCursor256 orRGBA rdwareCursor
SetColorCursorRGB

, SetMon , Se , SetCursorPos, ShowCu ,
, EndAccess, Se , SetColorCurs , IsHa ,

SciTech SNAP, Graphics Architecture 418

Graphics Device Driver Reference

SetColorCursorRGBA

Sets a new 64x64 32-bit color RGBA alpha blended hardware cursor image.

Declaration
void NAPI GA_cursorFuncs::SetColorCursorRGBA(
 GA_colorCursorRGBA *cursor)

Prototype In
snap/graphics.h

Parameters
cursor Pointer to an GA_colorCursorRGBA structure for the cursor

image

Description
This function downloads the specified 32-bit RGBA alpha blended cursor definition
from the application into the hardware cursor. The cursor data is passed by the
application in the GA_col format; please see the documentation for this
structure for the format of the data passed to this function.

orCursorRGBA

Note: To pad the cursor definition to 64x64 for cursors that are smaller than 64x64 in size,
simply fill in the remainder of the XORMask and ANDMask with zeroes.

See Also
SetMonoCursor oCursorColor tColorCursor rsor
BeginAccess tColorCursor256 orRGBA rdwareCursor
SetColorCursorRGB

, SetMon , Se , SetCursorPos, ShowCu ,
, EndAccess, Se , SetColorCurs , IsHa ,

SciTech SNAP, Graphics Architecture 419

Graphics Device Driver Reference

SetCursorPos

Sets the hardware cursor position.

Declaration
N_int32 NAPI GA_cursorFuncs::SetCursorPos(
 N_int32 x,
 N_int32 y)

Prototype In
snap/graphics.h

Parameters
x X coordinate of the cursor position
y Y coordinate of the cursor position

Return Value
Ignored. The return value is obsolete and should always be ignored.

Description
This function sets the location of the hardware cursor in display coordinates. This
function takes the X and Y coordinates of the new cursor location. This function will
place the cursor so that the hotspot of the currently active cursor image is located at the
specified (X,Y) location, and will correctly handle special cases where the cursor image
needs to be located off the edges of the display screen (such as when X=0, Y=0 and
HotX,HotY > 0).

See Also
SetMonoCursor oCursorColor tColorCursor rsor
BeginAccess tColorCursor256 orRGBA rdwareCursor
SetColorCursorRGB

, SetMon , Se , SetCursorPos, ShowCu ,
, EndAccess, Se , SetColorCurs , IsHa ,

SciTech SNAP, Graphics Architecture 420

Graphics Device Driver Reference

SetMonoCursor

Sets a new 64x64 monochrome hardware cursor image.

Declaration
void NAPI GA_cursorFuncs::SetMonoCursor(
 GA_monoCursor *cursor)

Prototype In
snap/graphics.h

Parameters
cursor Pointer to an GA_monoC structure for the cursor image ursor

GA_monoCursor

Description
This function downloads the specified monochrome cursor definition from the
application into the hardware cursor. The cursor data is passed by the application in the

 structure.

Note: To pad the cursor definition to 64x64 for cursors that are smaller than 64x64 in size,
simply fill in the remainder of the XORMask and ANDMask with zeroes.

See Also
SetMonoCursor oCursorColor tColorCursor rsor
BeginAccess tColorCursor256 orRGBA rdwareCursor
SetColorCursorRGB

, SetMon , Se , SetCursorPos, ShowCu ,
, EndAccess, Se , SetColorCurs , IsHa ,

SciTech SNAP, Graphics Architecture 421

Graphics Device Driver Reference

SetMonoCursorColor

Sets the foreground and background color for the monochrome hardware cursor.

Declaration
void NAPI GA_cursorFuncs::SetMonoCursorColor(
 GA_palette *foreground,
 GA_palette *background)

Prototype In
snap/graphics.h

Parameters
foreground Foreground color for the cursor
background Background color for the cursor

Description
This function sets both the foreground and background colors for the hardware cursor,
which as passed in as G structures. In 8bpp display modes the color index of the
cursor color is passed in the Red member of GA_palette structure. The exception to this is
for 8bpp display modes that have the gaHave8bppRGBCursor flag set in the

 Attributes field. When this is set, the full RGB color of the cursor is passed
in the red, green and blue members of the GA_p structue.

A_palette

GA_modeInfo
alette

SetMonoCursor oCursorColor tColorCursor rsor
BeginAccess tColorCursor256 orRGBA rdwareCursor
SetColorCursorRGB

For 15-bpp and above RGB modes, the full RGB color of the cursor is always passed in
the red, green and blue members of the GA_palette structure.

See Also
, SetMon , Se , SetCursorPos, ShowCu ,

, EndAccess, Se , SetColorCurs , IsHa ,

SciTech SNAP, Graphics Architecture 422

Graphics Device Driver Reference

ShowCursor

Shows or hides the hardware cursor image.

Declaration
void NAPI GA_cursorFuncs::ShowCursor(
 N_int32 visible)

Prototype In
snap/graphics.h

Parameters
visible 1 to show the cursor, 0 to hide the cursor

Description
This function unconditionally either show or hides the current active hardware cursor
image.

See Also
SetMonoCursor oCursorColor tColorCursor rsor
BeginAccess tColorCursor256 orRGBA rdwareCursor
SetColorCursorRGB

, SetMon , Se , SetCursorPos, ShowCu ,
, EndAccess, Se , SetColorCurs , IsHa ,

SciTech SNAP, Graphics Architecture 423

Graphics Device Driver Reference

GA_devCtx

Declaration
struct GA_devCtx {
 char Signature[20];
 N_uint32 Version;
 N_uint32 DriverRev;
 char OemVendorName[80];
 char OemCopyright[80];
 N_uint16 _FAR_ *AvailableModes;
 N_int32 DeviceIndex;
 N_uint32 TotalMemory;
 N_uint32 Attributes;
 N_uint32 WorkArounds;
 N_uint32 TextSize;
 N_uint32 TextBasePtr;
 N_uint32 BankSize;
 N_uint32 BankedBasePtr;
 N_uint32 LinearSize;
 N_uint32 LinearBasePtr;
 N_uint32 ZBufferSize;
 N_uint32 ZBufferBasePtr;
 N_uint32 TexBufferSize;
 N_uint32 TexBufferBasePtr;
 N_uint32 LockedMemSize;
 N_uint32 IOBase;
 N_uint32 MMIOBase[4];
 N_uint32 MMIOLen[4];
 void _FAR_ *DriverStart;
 N_uint32 DriverSize;
 N_uint32 BusType;
 N_uint32 AttributesExt;
 N_uint32 res1[18];

 void _FAR_ *IOMemMaps[4];
 void _FAR_ *TextMem;
 void _FAR_ *BankedMem;
 void _FAR_ *LinearMem;
 void _FAR_ *ZBufferMem;
 void _FAR_ *TexBufferMem;
 void _FAR_ *LockedMem;
 N_uint32 LockedMemPhys;
 void _FAR_ *TextFont8x8;
 void _FAR_ *TextFont8x14;
 void _FAR_ *TextFont8x16;
 GA_palette _FAR_ *VGAPal4;
 GA_palette _FAR_ *VGAPal8;
 N_uint32 res3[18];

 struct GA_devCtx _FAR_ *ring0DC;
 void _FAR_ *pMdl;

 GA_loaderFuncs loader;
 }

Prototype In
snap/graphics.h

Description

SciTech SNAP, Graphics Architecture 424

Graphics Device Driver Reference

Main graphics device context structure. This structure consists of a header block that
contains configuration information about the graphic device, as well as detection
information and runtime state information.

The Signature member is filled with the null terminated string 'GRAPHICS\0' by the
driver implementation. This can be used to verify that the file loaded really is an
graphics device driver.

The Version member is a BCD value which specifies what revision level of the graphics
specification is implemented in the driver. The high byte specifies the major version
number and the low byte specifies the minor version number. For example, the BCD
value for version 1.0 is 0x100 and the BCD value for version 2.2 would be 0x202.

The DriverRev member specifies the driver revision level, and is used by the driver
configuration software to determine which version was used to generate the driver file.

The OemVendorName member contains the name of the vendor that developed the
device driver implementation, and can be up to 80 characters in length.

The OemCopyright member contains a copyright string for the vendor that developed
the device driver implementation and may be up to 80 characters in length.

The AvailableModes is an pointer within the loaded driver to a list of mode numbers for
all displaymodes supported by the graphics driver. Each mode number occupies one
word (16-bits), and is terminated by a -1 (0FFFFh). Any modes found in this list are
guaranteed to be available for the current configuration.

The TotalMemory member indicates the maximum amount of memory physically
installed and available to the frame buffer in 1Kb units. Note that not all graphics modes
will be able to address all of this memory.

The Attributes member contains a number of flags that describes certain important
characteristics of the graphics controller. The members are exactly the same as those
provided in the GA_mod block for each video mode, but the meaning is slightly
different. For each flag defined in the GA_Attribut enumeration, it represents
whether the controller can support these modes in any available graphics modes. Please
see the GetVideoModeInfo function for a detailed description of each flags meaning.

eInfo
eFlagsType

The TextSize member contains the size of the text mode framebuffer in bytes. It will
generally be 64Kb in length. The TextBasePtr member is a 32-bit physical memory
address where the text mode framebuffer memory window is located in the CPU
address space. This will generally be 0xB0000 to cover the VGA text framebuffer
window (both color and monochrome modes).

The BankSize member contains the size of the banked memory buffer in bytes. It can be
either 4Kb or 64Kb in length. The BankedBasePtr member is a 32-bit physical memory
address where the banked framebuffer memory window is located in the CPU address
space. If the banked framebuffer mode is not available, then this member will be zero.

SciTech SNAP, Graphics Architecture 425

Graphics Device Driver Reference

The LinearSize member is the 32-bit length of the linear frame buffer memory in bytes.
In can be any length up to the size of the available video memory. The LinearBasePtr
member is the 32-bit physical address of the start of frame buffer memory when the
controller is in linear frame buffer memory mode. If the linear framebuffer is not
available, then this member will be zero.

The ZBufferSize member is the 32-bit length of the local z-buffer (or depth buffer)
memory in bytes. In can be any length up to the size of the available local z-buffer
memory. The ZBufferBasePtr member is the 32-bit physical address of the start of local
z-buffer memory. Note that if the controller does not have local z-buffer memory, but
shares the z-buffer in the local framebuffer memory, these two fields will be set to 0.

The TexMemSize member is the 32-bit length of the local texture memory in bytes. In
can be any length up to the size of the available local texture memory. The
TexMemBasePtr member is the 32-bit physical address of the start of local texture
memory. Note that if the controller does not have local texture memory, but loads
textures in the local framebuffer memory, this field will be set to 0.

The LockedMemSize contains the amount of locked, contiguous memory in bytes that
the graphics driver requires for programming the hardware. If the graphics accelerator
requires DMA transfers for 2D and 3D rendering operations, this member can be set to
the length of the block of memory that is required by the driver. The driver loader code
will attempt to allocate a block of locked, physically contiguous memory from the
operating system and place a pointer to this allocated memory in the LockedMem
member for the driver, and the physical address of the start of this memory block in
LockedMemPhys. Note that the memory must be locked so it cannot be paged out do
disk, and it must be physically contiguous so that DMA operations will work correctly
across 4Kb CPU page boundaries. If the driver does not require DMA memory, this
value should be set to 0.

The MMIOBase member contains the 32-bit physical base addresses pointing to the start
of up to 4 separate memory mapped register areas required by the controller. The
MMIOLen member contains the lengths of each of these memory mapped IO areas in
bytes. When the application maps the memory mapped IO regions for the driver, the
linear address of the mapped memory areas will then be stored in the corresponding
entries in the IOMemMaps array, and will be used by the driver for accessing the
memory mapped registers on the controller. If any of these regions are not required, the
MMIOBase entries will be NULL and do not need to be mapped by the application.

Note: The memory regions pointed to by the MMIOBase addresses have special meanings for the
first two and second two addresses that are mapped. If the OS loader is running the driver
in user space with a safety level of 2, then the only the first two base addresses will be
mapped into user space, and the second two will be mapped only into kernel space (kernel
space can also access the user space mappings). Please see QueryFunctions for a more
detailed overview of the safety levels and how this relates to these regions.

The IOMemMaps member contains the mapped linear address of the memory mapped
register regions defined by the MMIOBase and MMIOLen members.

SciTech SNAP, Graphics Architecture 426

Graphics Device Driver Reference

The TextMem member contains the mapped linear address of the text mode
framebuffer, and will be filled in by the application when it has loaded the device driver.
This provides the device driver with direct access to the video memory on the controller
when in text modes.

The BankedMem member contains the mapped linear address of the banked memory
framebuffer, and will be filled in by the application when it has loaded the device driver.
This provides the device driver with direct access to the video memory on the controller
when in the banked framebuffer modes.

The LinearMem member contains the mapped linear address of the linear memory
framebuffer, and will be filled in by the application when it has loaded the device driver.
This provides the device driver with direct access to the video memory on the controller
when in the linear framebuffer modes.

Note: On some controllers the linear framebuffer address may be different for different color
depths, so the value in this variable may change gater initializing a mode. Applications
should always reload the address of the linear framebuffer from this variable gater
initializing a mode set to ensure that the correct value is always used.

The ZBufferMem member contains the mapped linear address of the local z-buffer
memory, and will be filled in by the application when it has loaded the device driver.
This provides the device driver with direct access to the local z-buffer memory on the
controller. If the controller does not have local z-buffer memory, this member will be set
to NULL.

The TexBufferMem member contains the mapped linear address of the local texture
memory, and will be filled in by the application when it has loaded the device driver.
This provides the device driver with direct access to the local texture memory on the
controller. If the controller does not have local texture memory, this member will be set
to NULL.

The LockedMem member contains a pointer to the locked DMA memory buffer
allocated for the loaded driver. The graphics driver can use this pointer to write data
directly to the DMA buffer before transferring it to the hardware. If the driver does not
require DMA memory, this value will be set to NULL by the loader.

The LockedMemPhys member contains the 32-bit physical memory address of the
locked DMA buffer memory allocated for the driver. The graphics driver can use this
physical address to set up DMA transfer operations for memory contained within the
DMA transfer buffer. If the driver does not require DMA memory, this value will be set
to 0 by the loader.

The TextFont8x8, TextFont8x14 and TextFont8x16 members contain pointers to the 8x8,
8x14 and 8x16 text font bitmaps allocated by the OS loader. This data is used by the
driver for VGA and extended text modes that require the bitmap font tables.

Members

SciTech SNAP, Graphics Architecture 427

Graphics Device Driver Reference

Signature 'GRAPHICS\0' 20 byte signature
Version Driver Interface Version
DriverRev Driver revision number
OemVendorName Vendor Name string
OemCopyright Vendor Copyright string
AvailableModes Offset to supported mode table
DeviceIndex Device index for the driver when loaded from disk
TotalMemory Amount of memory in Kb detected
Attributes Driver attributes
WorkArounds Hardware WorkArounds flags
TextSize Length of the text framebuffer in bytes
TextBasePtr Base address of the text framebuffer
BankSize Bank size in bytes (4Kb or 64Kb)
BankedBasePtr Physical addr of banked buffer
LinearSize Linear buffer size in bytes
LinearBasePtr Physical addr of linear buffer
ZBufferSize Z-buffer size in bytes
ZBufferBasePtr Physical addr of Z-buffer
TexBufferSize Texture buffer size in bytes
TexBufferBasePtr Physical addr of texture buffer
LockedMemSize Amount of locked memory for driver in bytes
IOBase Base address for I/O mapped registers (relocateable)
MMIOBase Base address of memory mapped I/O regions
MMIOLen Length of memory mapped I/O regions in bytes
DriverStart Pointer to the start of the driver in memory
DriverSize Size of the entire driver in memory in bytes
BusType Indicates the type of bus for the device (GA_busType)
Attributes Driver extended attributes flags
IOMemMaps Pointers to mapped I/O memory
BankedMem Ptr to mapped banked video mem
LinearMem Ptr to mapped linear video mem
ZBufferMem Ptr to mapped zbuffer mem
TexBufferMem Ptr to mapped texture buffer mem
LockedMem Ptr to allocated locked memory
LockedMemPhys Physical addr of locked memory
TextFont8x8 Ptr to 8x8 text font data
TextFont8x14 Ptr to 8x14 text font data
TextFont8x16 Ptr to 8x16 text font data
VGAPal4 Ptr to the default VGA 4bpp palette
VGAPal8 Ptr to the default VGA 8bpp palette
loader Internal device driver loader functions

SciTech SNAP, Graphics Architecture 428

Graphics Device Driver Reference

GA_driverFuncs

Prototype In
snap/graphics.h

Description
Function group containing all main device driver functions not related to mode
initialisation and setup, and not related to drawing and state management. This includes
support for things such as changing framebuffer banks, changing the displayed video
memory start address and program the hardware palette.

Note: Be sure to fill in the dwSize member of this structure when you call GA_queryFunctions
to the correct size of the structure at compile time!

SciTech SNAP, Graphics Architecture 429

Graphics Device Driver Reference

EnableStereoMode

Enables or disables hardware stereo page flipping.

Declaration
void NAPI GA_driverFuncs::EnableStereoMode(
 N_int32 enable)

Prototype In
snap/graphics.h

Parameters
enable not 0 to enable stereo mode, 0 to disable

Description
This function enables or disables hardware stereo LC shutter glasses operation. For
stereo LC shutter glasses support, the hardware must provide support for the dual
display start addresses so that the left and right images can be located in different
locations in display memory. The driver implementation should enable the stereo
display when the application calls this function with enable set to 1 and will remain in
free running mode until the application calls this function again with enable set to 0.
Check that the gaHaveStereo flag is set in the GA_modeInfo structure before trying to use
this function.

See Also
SetStereoDisplayStart tDisplayStartStatus tiveBuffer ffer
GetFlipStatus

, Ge , SetAc , FlipToStereoBu ,

SciTech SNAP, Graphics Architecture 430

Graphics Device Driver Reference

GetCurrentScanLine

Returns the current vertical scanline that the hardware is displaying.

Declaration
N_int32 NAPI GA_driverFuncs::GetCurrentScanLine(void)

Prototype In
snap/graphics.h

Return Value
Current scanline being displayed by the hardware.

Description
This function reads the hardware to determine what scanline is currently being
displayed at the time of the call. This can be used to determine where on the screen the
CRT raster beam is located, for special effects such as beam following animation.

Note: Note that not all hardware supports this functionality. If the hardware does not support
this, this function will be a NULL pointer.

SciTech SNAP, Graphics Architecture 431

Graphics Device Driver Reference

GetDisplayStartStatus

Returns the status of the last scheduled display start change.

Declaration
N_int32 NAPI GA_driverFuncs::GetDisplayStartStatus(void)

Prototype In
snap/graphics.h

Return Value
0 if flip has not occured, not 0 if it has

Description
This function returns the status of the last scheduled display start change set if
SetVisibleBuffer was called with the waitVRT flag set to 0.

See Also
SetDisplayStart lipStatus, SetActiveBuffer, FlipToBuffer, GetF

SciTech SNAP, Graphics Architecture 432

Graphics Device Driver Reference

GetGammaCorrectData

Returns the current hardware gamma correction table.

Declaration
void NAPI GA_driverFuncs::GetGammaCorrectData(
 GA_palette *pal,
 N_int32 num,
 N_int32 index)

Prototype In
snap/graphics.h

Parameters
pal Place to return the gamma data
num Number of gamma entries to read
index Index of first entry to read

Description
This function reads the hardware gamma correction tables for 15 bit and above graphics
modes. The gamma correction tables are used in these graphics modes to adjust the
response curves of each of the three color guns for color matching purposes. The gamma
correction tables are assumed to be 256 entries deep with three independent channels for
each of red, green and blue. Each value in the gamma tables are 8-bits wide, with a range
of 0 to 255. Gamma correction data is passed to the function in an array of GA_palette
structures, similar to the SetPaletteData function.

Note: If this hardware does not support gamma correction, this function will be a NULL pointer.

See Also
SetPaletteData GammaCorrectData etGammaCorrectDataExt
SetPaletteDataExt etteDataExt mmaCorrectDataExt

, GetPaletteData, Set , G ,
, GetPal , SetGa

SciTech SNAP, Graphics Architecture 433

Graphics Device Driver Reference

GetGammaCorrectDataExt

Returns the current hardware gamma correction table using 16-bit per color channel

Declaration
void NAPI GA_driverFuncs::GetGammaCorrectDataExt(
 GA_paletteExt *pal,
 N_int32 num,
 N_int32 index)

Prototype In
snap/graphics.h

Parameters
pal Place to return the gamma data
num Number of gamma entries to read
index Index of first entry to read

Description
This function reads the hardware gamma correction tables for 15 bit and above graphics
modes. The gamma correction tables are used in these graphics modes to adjust the
response curves of each of the three color guns for color matching purposes. The gamma
correction tables are assumed to be 256 entries deep with three independent channels for
each of red, green and blue. Each value in the gamma tables are 16-bits wide, with a
range of 0 to 65535. Note that this is different to the regular G
function, which takes 8-bit wide values. Internally the driver will convert the 16-bit
palette values to 8-bits if this is what the underlying hardware supports.

etGammaCorrectData

Note: If this hardware does not support gamma correction, this function will be a NULL pointer.

See Also
SetPaletteDataExt etteDataExt mmaCorrectDataExt mmaCorrectData
SetPaletteData GammaCorrectData

, GetPal , SetGa , GetGa ,
, GetPaletteData, Set

SciTech SNAP, Graphics Architecture 434

Graphics Device Driver Reference

GetPaletteData

Returns the current hardware color palette.

Declaration
void NAPI GA_driverFuncs::GetPaletteData(
 GA_palette *pal,
 N_int32 num,
 N_int32 index)

Prototype In
snap/graphics.h

Parameters
pal Place to return the palette data
num Number of palette entries to read
index Index of first entry to read

Description
This function reads the hardware color palette information from the hardware, and is
only valid in 8-bpp and lower color index modes. Color palette information is returns
from this function in an array of GA_palette structures. Each value in the GA_palette
structure is 8-bits wide, with a range of 0 to 255. Note that this is different to the
standard VGA palette programming routines, which normally take 6-bit wide values.
Internally the driver will convert the 8-bit palette values to 6-bits if this is what the
underlying hardware supports.

See Also
SetPaletteData mmaCorrectData mmaCorrectData teDataExt
SetPaletteDataExt mmaCorrectDataExt tGammaCorrectDataExt

, SetGa , GetGa , GetPalet ,
, SetGa , Ge

SciTech SNAP, Graphics Architecture 435

Graphics Device Driver Reference

GetPaletteDataExt

Returns the current hardware color palette using 16-bit per color channel

Declaration
void NAPI GA_driverFuncs::GetPaletteDataExt(
 GA_paletteExt *pal,
 N_int32 num,
 N_int32 index)

Prototype In
snap/graphics.h

Parameters
pal Place to return the extended palette data
num Number of palette entries to read
index Index of first entry to read

Description
This function reads the hardware color palette information from the hardware, and is
only valid in 8-bpp and lower color index modes. Color palette information is returns
from this function in an array of GA_paletteExt structures. Each value in the GA_paletteExt
structure is 16-bits wide, with a range of 0 to 65535. Note that this is different to the
regular SetP function, which takes 8-bit wide values. Internally the driver will
convert the 16-bit palette values to 8-bits if this is what the underlying hardware
supports.

aletteData

SetPaletteDataExt mmaCorrectDataExt tGammaCorrectDataExt a
SetPaletteData mmaCorrectData mmaCorrectData

See Also
, SetGa , Ge , GetPaletteDat ,

, SetGa , GetGa

SciTech SNAP, Graphics Architecture 436

Graphics Device Driver Reference

GetVSyncWidth

Returns the current vertical sync width.

Declaration
N_int32 NAPI GA_driverFuncs::GetVSyncWidth(void)

Prototype In
snap/graphics.h

Return Value
Current vertical sync width of CRTC display mode

Description
This function returns the current vertical sync width for the CRTC controller for the
current display mode. You can only call this function once you have called
SetVideoMode to initialise a valid display mode.

See Also
SetVSyncWidth

SciTech SNAP, Graphics Architecture 437

Graphics Device Driver Reference

IsVSync

Determines if the card is currently within the vertical retrace interval.

Declaration
N_int32 NAPI GA_driverFuncs::IsVSync(void)

Prototype In
snap/graphics.h

Return Value
not 0 if currently in the vertical sync interval, 0 if not.

Description
This function determines if the CRTC controller is currently within the vertical retrace
interval or not.

See Also
WaitVSync

SciTech SNAP, Graphics Architecture 438

Graphics Device Driver Reference

SetBank

Set the current bank for banked framebuffer rendering.

Declaration
void NAPI GA_driverFuncs::SetBank(
 N_int32 bank)

Prototype In
snap/graphics.h

Parameters
bank New bank to make the active read/write bank

Description
This function changes the currently active read/write bank for banked framebuffer
modes. This allows an application to directly access the video framebuffer through a
small memory aperture window. Only a single read/write bank is supported, and it
may be either 4Kb or 64Kb in length.

SciTech SNAP, Graphics Architecture 439

Graphics Device Driver Reference

SetDisplayStart

Sets the currently visible display start address.

Declaration
void NAPI GA_driverFuncs::SetDisplayStart(
 N_int32 offset,
 N_int32 waitVRT)

Prototype In
snap/graphics.h

Parameters
offset Offset to start of display memory to make visible
waitVRT Wait for retrace flag (true or false)

Description
This function sets the currently visible hardware display start address as a byte offset
from the start of physical display memory. Hence to display data beginnig at the start of
video memory you would set the offset parameter to 0. To display the second page for
double buffered animation you would set the offset parameter to 'YResolution *
BytesPerScanLine' for the current video mode. The waitVRT flag determines if the
function will wait for the vertical retrace when programming the hardware display start
address and the following are valid values:

value Description
0 Schedule change for next retrace and return immediately not 0 -

Wait for vertical retrace during programming
Generally you need to wait for a vertical retrace to enable flicker free animation when
doing double buffered animation. However if you have set up three visible display
buffers for hardware triple buffering (check that the gaHaveTripleBuffer flag is set in the

 structure) and you pass a value of 0 for waitVRT. In this case the function
will schedule the display start address and return immediately, and you can then call
the GetDisplayStartStatu function at a later date to determine if the previous display
start address has taken hold yet or not. In order for this to work properly, before you
need to access the next buffer for rendering, you should also loop until

 indicates that the last flip has taken place (by default this will
always be the case when a mode is first initialized).

GA_modeInfo

s

GetDisplayStartStatus

Note: The value passed into this function is always in units of bytes for 8bpp and above display
modes (and text modes). For 4bpp display modes the value is defined in units of pixels so
that pixel perfect scrolling can be achieved.

Note: If you have enabled the buffer manager, please use the buffer manager function
FlipToBuffer to change the display start address instead.

See Also

SciTech SNAP, Graphics Architecture 440

Graphics Device Driver Reference

SetDisplayStartXY, SetSt , Get , SetActiveBuffer,

ereoDisplayStart DisplayStartStatus
FlipToBuffer

SciTech SNAP, Graphics Architecture 441

Graphics Device Driver Reference

SetDisplayStartXY

Sets the currently visible display start address as an (x,y) coordinate.

Declaration
void NAPI GA_driverFuncs::SetDisplayStartXY(
 N_int32 x,
 N_int32 y,
 N_int32 waitVRT)

Prototype In
snap/graphics.h

Parameters
x X coordinate of first pixel to display
y Y coordinate of first pixel to display
waitVRT Wait for retrace flag

Description
This function sets the currently visible hardware display start address as an (x,y)
coordinate offset from the start of physical display memory. This is similar to

, however the driver does the conversion from an (x,y) coordinate to the
display memory offset for you. The waitVRT flag determines if the function will wait for
the vertical retrace when programming the hardware display start address and the
following are valid values:

SetDisplayStart

SetDisplayStart eoDisplayStart tartStatus

value Description
0 Schedule change for next retrace and return immediately not 0 -

Wait for vertical retrace during programming
See Also

, SetSter , GetDisplayS , SetActiveBuffer, FlipToBuffer

SciTech SNAP, Graphics Architecture 442

Graphics Device Driver Reference

SetGammaCorrectData

Programs the hardware gamma correction table.

Declaration
void NAPI GA_driverFuncs::SetGammaCorrectData(
 GA_palette *pal,
 N_int32 num,
 N_int32 index,
 N_int32 waitVRT)

Prototype In
snap/graphics.h

Parameters
pal Pointer to the gamma data to program
num Number of gamma entries to program
index Index of first entry to program
waitVRT Wait for vertical retrace flag

Description
This function programs the gamma correction tables for 15 bit and above graphics
modes. The gamma correction tables are used in these graphics modes to adjust the
response curves of each of the three color guns for color matching purposes. The gamma
correction tables are assumed to be 256 entries deep with three independent channels for
each of red, green and blue. Each value in the gamma tables are 8-bits wide, with a range
of 0 to 255. Gamma correction data is passed to the function in an array of GA_palette
structures, similar to the SetPaletteData function.

The wait for vertical retrace flag is used to synchronize the palette update with the start
of the vertical retrace. The following are valid values:

value Description
0 Change palette immediately not 0 - Program palette during

vertical retrace period
However if you are changing palette values at the same time as swapping display pages,
you may want to disable vertical retrace synching and program the palette entries
directly after swapping display pages. Generally you need to synchronize with the
vertical retrace while programming the palette to avoid the onset of snow (or
interference on the screen).

Note: If this hardware does not support gamma correction, this function will be a NULL pointer.

See Also
GetPaletteData eData etGammaCorrectData GammaCorrectDataExt
GetPaletteDataExt ammaCorrectDataExt

, SetPalett , G , Set ,
, SetPaletteDataExt, GetG

SciTech SNAP, Graphics Architecture 443

Graphics Device Driver Reference

SetGammaCorrectDataExt

Programs the hardware gamma correction table using 16-bit per color channel

Declaration
void NAPI GA_driverFuncs::SetGammaCorrectDataExt(
 GA_paletteExt *pal,
 N_int32 num,
 N_int32 index,
 N_int32 waitVRT)

Prototype In
snap/graphics.h

Parameters
pal Pointer to the gamma data to program
num Number of gamma entries to program
index Index of first entry to program
waitVRT Wait for vertical retrace flag

Description
This function programs the gamma correction tables for 15 bit and above graphics
modes. The gamma correction tables are used in these graphics modes to adjust the
response curves of each of the three color guns for color matching purposes. The gamma
correction tables are assumed to be 256 entries deep with three independent channels for
each of red, green and blue. Each value in the gamma tables are 16-bits wide, with a
range of 0 to 65535. Note that this is different to the regular SetGa
function, which takes 8-bit wide values. Internally the driver will convert the 16-bit
palette values to 8-bits if this is what the underlying hardware supports.

mmaCorrectData

CorrectDataThis function is basically the same as SetGamma except it deals with a gamma
ramp using 16-bit values per channel.

Note: If this hardware does not support gamma correction, this function will be a NULL pointer.

See Also
GetPaletteDataExt ammaCorrectDataExt CorrectData
GetPaletteData eData etGammaCorrectData

, SetPaletteDataExt, GetG , SetGamma ,
, SetPalett , G

SciTech SNAP, Graphics Architecture 444

Graphics Device Driver Reference

SetPaletteData

Programs the hardware color palette.

ette

GetPaletteData mmaCorrectData mmaCorrectData
GetPaletteDataExt mmaCorrectDataExt tGammaCorrectDataExt

Declaration
void NAPI GA_driverFuncs::SetPaletteData(
 GA_palette *pal,
 N_int32 num,
 N_int32 index,
 N_int32 waitVRT)

Prototype In
snap/graphics.h

Parameters
pal Pointer to the palette data to program
num Number of palette entries to program
index Index of first entry to program
waitVRT Wait for vertical retrace flag

Description
This function programs the color palette information for the current graphics mode, and
is only valid in 8-bpp and lower color index modes. Color palette information is passed
to the function in an array of GA_pal structures. Each value in the GA_palette structure
is 8-bits wide, with a range of 0 to 255. Note that this is different to the standard VGA
palette programming routines, which normally take 6-bit wide values. Internally the
driver will convert the 8-bit palette values to 6-bits if this is what the underlying
hardware supports.

The wait for vertical retrace flag is used to synchronize the palette update with the start
of the vertical retrace. The following are valid values:

value Description
0 Change palette immediately not 0 - Program palette during

vertical retrace period
However if you are changing palette values at the same time as swapping display pages,
you may want to disable vertical retrace synching and program the palette entries
directly after swapping display pages. Generally you need to synchronize with the
vertical retrace while programming the palette to avoid the onset of snow (or
interference on the screen).

See Also
, SetGa , GetGa , SetPaletteDataExt,

, SetGa , Ge

SciTech SNAP, Graphics Architecture 445

Graphics Device Driver Reference

SetPaletteDataExt

Programs the hardware color palette using 16-bit per color channel

Declaration
void NAPI GA_driverFuncs::SetPaletteDataExt(
 GA_paletteExt *pal,
 N_int32 num,
 N_int32 index,
 N_int32 waitVRT)

Prototype In
snap/graphics.h

Parameters
pal Pointer to the extended palette data to program
num

etteExt

aletteData

Number of palette entries to program
index Index of first entry to program
waitVRT Wait for vertical retrace flag

Description
This function programs the color palette information for the current graphics mode, and
is only valid in 8-bpp and lower color index modes. Color palette information is passed
to the function in an array of GA_pal structures. Each value in the GA_paletteExt
structure is 16-bits wide, with a range of 0 to 65535. Note that this is different to the
regular SetP function, which takes 8-bit wide values. Internally the driver will
convert the 16-bit palette values to 8-bits if this is what the underlying hardware
supports.

This function is basically the same as SetPaletteData except it deals with a palette with 16-
bit color values per channel.

See Also
GetPaletteDataExt, SetGammaCorrectDataExt, GetGammaCorrectDataExt, SetPaletteData,
GetPaletteData, SetGammaCorrectData, GetGammaCorrectData

SciTech SNAP, Graphics Architecture 446

Graphics Device Driver Reference

SetStereoDisplayStart

Sets the currently visible stereo display start address.

Declaration
void NAPI GA_driverFuncs::SetStereoDisplayStart(
 N_int32 leftOffset,
 N_int32 rightOffset,
 N_int32 waitVRT)

Prototype In
snap/graphics.h

Parameters
leftOffset Offset to start of left display image (in bytes)
rightOffset Offset to start of right display image (in bytes)
waitVRT Wait for retrace flag

Description
This function is identical to the SetDisplayStart function except that it takes both left and
right display start address offsets. If the display controller supports a hardware stereo
display mode, it will alternate between displaying the left image and right image every
vertical retrace. This function is used to program the left and right display start
addresses to differnt values for when hardware stereo mode is enabled. Check that the
gaHaveStereo flag is set in the GA_m structure before trying to use this function.
The waitVRT flag determines if the function will wait for the vertical retrace when
programming the hardware display start address and the following are valid values:

odeInfo

value Description
0 Schedule change for next retrace and return immediately not 0 -

Wait for vertical retrace during programming
Note: The value passed into this function is always in units of bytes for 8bpp and above display

modes (and text modes). For 4bpp display modes the value is defined in units of pixels so
that pixel perfect scrolling can be achieved.

See Also
SetDisplayStart, GetDisplayStartStatus, EnableStereoMode, SetActiveBuffer,
FlipToStereoBuffer

SciTech SNAP, Graphics Architecture 447

Graphics Device Driver Reference

SetVSyncWidth

Set the current vertical sync width.

Declaration
void NAPI GA_driverFuncs::SetVSyncWidth(
 N_int32 width)

Prototype In
snap/graphics.h

Parameters
width New vertical sync width to program

Description
This function changes the current vertical sync width for the CRTC controller to the
passed in sync with. You should use this function with care, and only program values
that are within +-1 from the original sync width returned by GetVSyncWidth. This
function is intended primarily to support stereo LC shutter glasses that use the sync
width to determine the left and right frames of the stereo display image.

See Also
GetVSyncWidth

SciTech SNAP, Graphics Architecture 448

Graphics Device Driver Reference

WaitVSync

Waits until the graphics card enters the vertical retrace interval.

Declaration

snap/graphics.h

See Also
IsVSync

void NAPI GA_driverFuncs::WaitVSync(void)

Prototype In

Description
This function waits until the CRTC controller is enters the start of the vertical retrace
interval and then returns.

SciTech SNAP, Graphics Architecture 449

Graphics Device Driver Reference

GA_funcGroupsType

Declaration

snap/graphics.h

The GA_GET_FIRST_OEM defines the first identifier for OEM extensions. OEM's are
free to added their own private functional extensions to the drivers as desired. Note that
OEM's must verify the presence of their OEM drivers via the the OemVendorName
string before attempting to use OEM extension functions.

Reserved value
Get GA_initFuncs structure

SFuncs
Get GA_SCIFuncs structure

tateFuncs
enderFuncs

typedef enum {
 GA_GET_RESERVED,
 GA_GET_INITFUNCS,
 GA_GET_DRIVERFUNCS,
 GA_GET_CURSORFUNCS,
 GA_GET_VIDEOFUNCS,
 GA_GET_DPMSFUNCS,
 GA_GET_SCIFUNCS,
 GA_GET_2DSTATEFUNCS,
 GA_GET_2DRENDERFUNCS,
 GA_GET_3DSETUPFUNCS,
 GA_GET_3DSTATEFUNCS,
 GA_GET_3DRENDERFUNCS,
 GA_GET_D3DRENDERFUNCS,
 GA_GET_VBEFUNCS,
 GA_GET_REGIONFUNCS,
 GA_GET_BUFFERFUNCS,
 GA_GET_CLIPPERFUNCS,
 GA_GET_FIRST_OEM = 0x00010000
 } GA_funcGroupsType

Prototype In

Description
This enumeration defines the identifiers used to obtain the device context function
group pointer structures. As new features and capabilities are added to the future
versions of the specification, new identifiers will be added to extract new function
pointers from the drivers.

Members
GA_GET_RESERVED
GA_GET_INITFUNCS
GA_GET_DRIVERFUNCS Get GA_driverFuncs structure
GA_GET_CURSORFUNCS Get GA_cursorFuncs structure
GA_GET_VIDEOFUNCS Get GA_videoFuncs strucure
GA_GET_DPMSFUNCS Get GA_DPM structure
GA_GET_SCIFUNCS
GA_GET_2DSTATEFUNCS Get GA_2DS structure
GA_GET_2DRENDERFUNCS Get GA_2DR structure
GA_GET_3DSETUPFUNCS Get GA_3DSetupFuncs structure
GA_GET_3DSTATEFUNCS Get GA_3DStateFuncs structure
GA_GET_3DRENDERFUNCS Get GA_3DRenderFuncs structure
GA_GET_D3DRENDERFUNCS Get GA_D3DRenderFuncs structure

SciTech SNAP, Graphics Architecture 450

Graphics Device Driver Reference

GA_GET_VBEFUNCS Get GA_VBE structure Funcs

erFuncs
Get GA_clipperFuncs structure

GA_GET_REGIONFUNCS Get GA_regionFuncs structure
GA_GET_BUFFERFUNCS Get GA_buff structure
GA_GET_CLIPPERFUNCS
GA_GET_FIRST_OEM ID of first OEM extension function

SciTech SNAP, Graphics Architecture 451

Graphics Device Driver Reference

GA_globalOptions

Declaration
typedef struct {
 N_uint32 dwSize;
 N_uint8 bVirtualDisplay;
 N_uint8 bPortrait;
 N_uint8 bFlipped;
 N_uint8 bInvertColors;
 N_uint8 bVBEOnly;
 N_uint8 bVGAOnly;
 N_uint8 bReserved1;
 N_uint16 wCertifiedVersion;
 N_uint8 bNoWriteCombine;
 N_uint8 bAllowNonCertified;
 N_uint8 bLCDUseBIOS;
 N_uint8 bUseMemoryDriver;
 N_uint16 wSysMemSize;
 N_uint32 dwReserved2;
 N_uint8 bVBEUseLinear;
 N_uint8 bVBEUsePal;
 N_uint8 bVBEUsePM32;
 N_uint8 bReserved2;
 N_uint8 bVBEUseVBE20;
 N_uint8 bVBEUseVBE30;
 N_uint8 bVBEUsePM;
 N_uint8 bVBEUseSCI;
 N_uint8 bVBEUseDDC;
 N_uint8 bGDIUseAccel;
 N_uint8 bGDIUseBrushCache;
 N_uint8 bGDIUseBitmapCache;
 N_uint8 bDXUseAccel2D;
 N_uint8 bDXUseAccel3D;
 N_uint8 bDXUseAccelVideo;
 N_uint8 bDXWaitRetrace;
 N_uint32 dwCPLFlags;
 N_uint32 dwSharedAGPMemSize;
 N_uint8 bUseVBECore;
 N_uint8 bUseVGACore;
 N_uint32 dwCheckForUpdates;
 N_uint8 bNoDDCDetect;
 N_uint8 bDisableLogFile;
 N_uint8 bCheckWebSelection;
 N_uint16 wMonitorHSize;
 N_uint16 wMonitorVSize;
 N_uint16 wOptimizedModeXRes;
 N_uint16 wOptimizedModeYRes;
 N_uint16 wOptimizedModeBits;
 GA_recMode recommendedMode;
 GA_recMode recommendedMode8;
 GA_recMode recommendedMode16;
 GA_recMode recommendedMode24;
 GA_recMode recommendedMode32;
 N_uint8 bAGPFastWrite;
 N_uint8 res1[67];
 GA_layout virtualSize;
 GA_layout resolutions[GA_MAX_VIRTUAL_DISPLAYS];
 GA_layout bounds[GA_MAX_VIRTUAL_DISPLAYS];
 } GA_globalOptions

Prototype In

SciTech SNAP, Graphics Architecture 452

Graphics Device Driver Reference

snap/graphics.h

Description
Structure returned by GA_getGlobalOptions, which contains configuration information
about the options effective for all installed display devices. This structure also contains
the layout information used for multi-controller options in SNAP Graphics (such as
what screen is located where).

Note: The dwSize member is intended for future compatibility, and should be set to the size of
the structure as defined in this header file. Future drivers will be compatible with older
software by examiming this value.

Members
dwSize Set to size of structure in bytes
bVirtualDisplay Enable virtual display mode
bPortrait Enable portrait display mode
bFlipped Enable flipped display mode
bInvertColors Enable invert color mode
bVBEOnly Enable VBE/Core fallback driver
bVGAOnly Enable VGA fallback driver
bReserved1 Reverved option; must always be zero!
bAllowNonCertified Allow uncertified drivers to load
wCertifiedVersion Version of certify program to allow
bNoWriteCombine Disable write combining
bLCDUseBIOS Enable use of BIOS when on the LCD panel
bUseMemoryDriver Enable system memory driver
wSysMemSize Amount of memory to allocate for sysmem driver

(Kb)
dwCPLFlags Place to store control panel UI settings
dwSharedAGPMemSize Amount of shared AGP memory to use for

framebuffer
bUseVBECore Use the VBE/Core emulation driver
bUseVGACore Use the VGA/Core emulation driver
dwCheckForUpdates Time stamp to check for updates next
bNoDDCDetect Disable automatic DDC monitor detection
bDisableLogFile Disable logging of information to log file
bCheckWebSelection SDD GUI specific value for web check updates
virtualSize Virtual size for multi-controller displays
resolutions Physical resolutions for multi-controller displays
bounds Virtual layout for multi-controller displays

SciTech SNAP, Graphics Architecture 453

Graphics Device Driver Reference

GA_initFuncs

Prototype In
snap/graphics.h

Description
Function group containing all device driver init functions available for the device. These
functions include all mode information, setup and initialisation functions.

Note: Be sure to fill in the dwSize member of this structure when you call GA_queryFunctions
to the correct size of the structure at compile time!

SciTech SNAP, Graphics Architecture 454

Graphics Device Driver Reference

AlignLinearBuffer

Aligns the linear start address to a hardware required boundary

Declaration
ibool NAPI GA_initFuncs::AlignLinearBuffer(
 N_int32 height,
 N_int32 *stride,
 N_int32 *offset,
 N_int32 *size,
 N_int32 growUp)

Prototype In
snap/graphics.h

Parameters
height Height of the buffer to align
stride Stride of the buffer to align (modified)
offset Starting offset of the buffer to align (modified)
size Place to return the size of the resulting buffer
growUp True if the buffer is allocated on a heap that grows up in

memory

Return Value
True if the buffer was successfully aligned in video memory, false if not.

Description

eInfo

This optional function is used to align a buffer in offscreen video memory as necessary
for the hardware. If this function is not implemented, it is assumed the hardware can
work with simple fixed alignment requirements, and the buffers should be aligned as
per the alignment boundaries described by the BitmapStartAlign and BitmapStridePad
members of the GA_mod structure. However some hardware has special alignment
requirements that cannot be easily desrcibed with a simple fixed alignment factor, so in
those cases this function will need to be called to align the offscreen memory buffer
appropriately.

If the growUp flag is true, the buffer is aligned such that the memory grows up in
memory above the initial value passed in the offset parameter. If the growUp flag is
false, the buffer is aligned such that the memory grows down from the initial value
passed in the offset parameter. The value returned in the offset parameter is always the
value at the start of the buffer in memory (ie: lowest memory address).

SciTech SNAP, Graphics Architecture 455

Graphics Device Driver Reference

GetActiveHead

Return the currently active output head for the device

Declaration
N_int32 NAPI GA_initFuncs::GetActiveHead(void)

Prototype In
snap/graphics.h

Return Value
Index of currenly active head (GA_m) ultiHeadType

GetNumberOfHeads ActiveHead

Description
This function is determine the currently active output head for the device.

See Also
, Set

SciTech SNAP, Graphics Architecture 456

Graphics Device Driver Reference

GetCRTCTimings

Returns the current CRTC timings for the active display mode.

Declaration
void NAPI GA_initFuncs::GetCRTCTimings(
 GA_CRTCInfo *crtc)

Prototype In
snap/graphics.h

Parameters

SetCRTCTimings rentRefreshRate alRefresh CTimings
GA_restoreCRTCTimings CTimings
GA_setDefaultRefresh

crtc Place to store the active CRTC timings

Description
This function returns a copy of the currently active CRTC timings for the active display
mode in the driver. This function is mostly used for interactive centering and refresh
control in utility programs.

See Also
, GetCur , SetGlob , GA_saveCRT ,

, GA_getCRTCTimings, GA_setCRT ,

SciTech SNAP, Graphics Architecture 457

Graphics Device Driver Reference

GetCertifyInfo

Returns the current certification information block for the driver

Declaration
void NAPI GA_initFuncs::GetCertifyInfo(
 GA_certifyInfo *info)

Prototype In
snap/graphics.h

Parameters
info Place to store the returned certification information

Description
This function returns a structure which contains complete certification information
about the loaded device driver. The information contained in this structure is
informational only, and intened mainly for technical support purposes.

Note: The dwSize member of the profile structure is intended for future compatibility, and must
be set to the size of the structure before calling this function. Only the number of bytes set
in the dwSize member will be copied into the callers structure.

See Also
GetConfigInfo

SciTech SNAP, Graphics Architecture 458

Graphics Device Driver Reference

GetClosestPixelClock

Finds the closest pixel clock to the requested pixel clock.

Declaration
N_uint32 NAPI GA_initFuncs::GetClosestPixelClock(
 N_int32 xRes,
 N_int32 yRes,
 N_int32 bitsPerPixel,
 N_uint32 pixelClock)

Prototype In
snap/graphics.h

Parameters
xRes Physical X resolution for the display mode
yRes Physical Y resolution for the display mode
bitsPerPixel Color depth for the display mode
pixelClock Requested pixel clock in units of Hz.

Return Value
Closest pixel clock in units of Hz.

Description
This function allows an application to determine if a particular pixel clock is available.
When this function is called it will run the requested pixel clock through the internal
PLL programming routines and return the actual pixel clock that will be programmed
into the hardware. The process of running the PLL clock computation routines may
cause the returned pixel clock to be rounded slightly up or down from the requested
value, however the driver should implement the algorithms to attempt to find clocks
that are the same as or higher than the requested value. Note that the calling application
must also pass in the physical display resolution and color depth for the mode that will
be using this pixel clock to this function. This information is necessary so that the driver
can determine any necessary hardware limitations internally for the display mode
before looking for the closest physical pixel clock.

If the driver implementation uses a table driven clock programming approach, it should
always attempt to find the next highest pixel clock in the table to the requested clock.
The exception to this is if there is a lower clock in the table that is within a tolerance of
1% of the requested clock in which case this clock should be returned (and the next
highest pixel clock is not within 1% of the requested clock).

This pixel clock can then be used by the application to compute the exact GTF CRTC
timing parameters for the mode. Note that for hardware that is not fully programmable,
the returned pixel clock that is the closest the one desired may be substantially different
(ie: you could get back 39Mhz when you request 35Mhz). It is up the calling application
to determine if the clock is suitable and to attempt to choose a different clock if not
suitable. The pixel clocks passed in and returned occupy 32-bits and represents the pixel

SciTech SNAP, Graphics Architecture 459

Graphics Device Driver Reference

clock in units of Hz (ie: a pixel clock of 25.18Mhz is represented with a value of
25180000).

See Also
SetVideoMode mVideoMode odeInfo, SetCusto , GetVideoM , GetCustomVideoModeInfo

SciTech SNAP, Graphics Architecture 460

Graphics Device Driver Reference

GetConfigInfo

Returns information about the installed graphics device.

Declaration
void NAPI GA_initFuncs::GetConfigInfo(
 GA_configInfo *info)

Prototype In
snap/graphics.h

Parameters
info Place to store the returned hardware configuration information

Description
This function returns a structure defining the hardware configuration information for
the installed graphics device that the loaded driver is controlling. This information is
informative and only intended for debugging and technical support.

Note: The dwSize member of the info structure is intended for future compatibility, and must be
set to the size of the structure before calling this function. Only the number of bytes set in
the dwSize member will be copied into the callers structure.

See Also
GetCertifyInfo

SciTech SNAP, Graphics Architecture 461

Graphics Device Driver Reference

GetCurrentRefreshRate

Returns the currently active refresh rate for the display mode

Declaration
N_int32 NAPI GA_initFuncs::GetCurrentRefreshRate(void)

Prototype In
snap/graphics.h

Return Value
Currently active refresh rate units of 0.01 Hz

Description
This function returns the currently active refresh rate for the display mode is units of
0.01 Hz (ie: 60.5 Hz is a value 605).

See Also
SetVideoMode omVideoModeInfo
GetCustomVideoModeInfoExt entVideoModeInfo

, GetVideoModeInfoExt, GetCust ,
, GetCurr ,

SciTech SNAP, Graphics Architecture 462

Graphics Device Driver Reference

GetCurrentVideoModeInfo

Returns information about the current display mode.

Declaration
void NAPI GA_initFuncs::GetCurrentVideoModeInfo(
 GA_modeInfo *modeInfo)

Prototype In
snap/graphics.h

Parameters
modeInfo Place to store the current mode information (GA_) modeInfo

eInfo

odeInfo
GetVideoMode

Description
This function returns complete information about the currently active SNAP display
mode. This function fills the GA_mod structure with detailed information about the
current mode, and will include correct information about the virtual resolution, scanline
width etc. Hence the values returned here will accurately reflect any changes made with
the call to SetVideoMode so the mode information may be slightly different to what you
would get if you called GetVideoM for the mode number returned by

.

Note: The calling code must first ensure that the dwSize member of the GA_modeInfo structure
is set to the size of the structure in bytes before calling this function. Only the number of
bytes set in the dwSize member will be copied into the callers structure.

See Also
GetVideoModeInfo deoModeInfoExt omVideoModeInfo
GetCustomVideoModeInfoExt

, GetVi , GetCust ,
, GetCurrentRefreshRate, SetVideoMode

SciTech SNAP, Graphics Architecture 463

Graphics Device Driver Reference

GetCustomVideoModeInfo

Returns information about a custom display mode.

Declaration
N_int32 NAPI GA_initFuncs::GetCustomVideoModeInfo(
 N_int32 xRes,
 N_int32 yRes,
 N_int32 virtualX,
 N_int32 virtualY,
 N_int32 bitsPerPixel,
 GA_modeInfo *modeInfo)

Prototype In
snap/graphics.h

Parameters
xRes Physical X resolution for the display mode
yRes Physical Y resolution for the display mode
virtualX Logical X resolution for the display mode
virtualY Logical Y resolution for the display mode
bitsPerPixel Color depth for the display mode
modeInfo Place to store the returned mode information

(GA_modeInfo)

Return Value
0 on success, -1 on failure

Description
This function returns extended information about a custom SNAP display mode. A
custom display mode does not need to exist in the mode list pointed to by the
AvailableModes pointer in the GA_devCtx structure, and this function will fail for modes
that the hardware cannot handle. If the requested mode can be handled by the
hardware, this function then fills in the GA_mode structure with detailed information
about the requested custom display mode.

Info

Note: Internally SNAP driver have no concept for real display modes, so the regular
GetVideoModeInfo function also ends up calling this function internally for modes lists in
the driver mode profile.

Note: The calling code must first ensure that the dwSize member of the GA_modeInfo structure
is set to the size of the structure in bytes before calling this function. Only the number of
bytes set in the dwSize member will be copied into the callers structure.

See Also
GetVideoModeInfo deoMode, SetVi , SetCustomVideoMode

SciTech SNAP, Graphics Architecture 464

Graphics Device Driver Reference

GetCustomVideoModeInfoExt

Returns information about a custom display mode for a specific output device

Declaration
N_int32 NAPI GA_initFuncs::GetCustomVideoModeInfoExt(
 N_int32 xRes,
 N_int32 yRes,
 N_int32 virtualX,
 N_int32 virtualY,
 N_int32 bitsPerPixel,
 GA_modeInfo *modeInfo,
 N_int32 outputDevice)

utFlagsType

utputFlagsType

Prototype In
snap/graphics.h

Parameters
xRes Physical X resolution for the display mode
yRes Physical Y resolution for the display mode
virtualX Logical X resolution for the display mode
virtualY Logical Y resolution for the display mode
bitsPerPixel Color depth for the display mode
modeInfo Place to store the returned mode information

(GA_modeInfo)
outputDevice Output device flags to use (GA_Outp)

Return Value
0 on success, -1 on failure

Description
This function returns extened information about a custom SNAP display mode for a
specific output device selection. This is different to the normal GetCustomVideoModeInfo
function, which returns the display mode information for the currently active output
device (ie: LCD, CRT or TV). The only difference is the addition of the outputDevice
parameter, which contains flags from the GA_O enumeration.

This function is useful if you are running on a different output device (ie: CRT display)
but with to find out the capabilities of a another output device (ie: LCD or TV), without
needing to first switch to that device and make it active.

Note: The calling code must first ensure that the dwSize member of the GA_modeInfo structure
is set to the size of the structure in bytes before calling this function. Only the number of
bytes set in the dwSize member will be copied into the callers structure.

See Also
GetVideoModeInfo deoModeInfoExt omVideoModeInfo
GetCurrentVideoModeInfo e

, GetVi , GetCust ,
, GetCurrentRefreshRate, SetVideoMod

SciTech SNAP, Graphics Architecture 465

Graphics Device Driver Reference

GetDisplayOutput

Returns the currently active device(s) for display output

Declaration
N_int32 NAPI GA_initFuncs::GetDisplayOutput(void)

Prototype In
snap/graphics.h

Return Value
Flags of currently active display output device(s).

Description
This function allows the application to tell what display devices are currently being used
to display the image for the user.

SciTech SNAP, Graphics Architecture 466

Graphics Device Driver Reference

GetMonitorInfo

Returns the currently configured monitor information for the device.

Declaration
void NAPI GA_initFuncs::GetMonitorInfo(
 GA_monitor *monitor)

Prototype In
snap/graphics.h

Parameters
monitor Place to store the current monitor information

SetMonitorInfo MonitorInfo

Description
This function returns a copy of the currently configured monitor for the device.

See Also
, GA_save , GA_detectPnPMonitor

SciTech SNAP, Graphics Architecture 467

Graphics Device Driver Reference

GetNumberOfHeads

Return the number of physical output heads supported by the device

Declaration
N_int32 NAPI GA_initFuncs::GetNumberOfHeads(void)

Prototype In
snap/graphics.h

Return Value
Number of available output heads

Description
This function is used to determine if the hardware device supports multiple output
heads, and if so how many heads. By default all drivers will return a value of 1 if they
do not support multiple heads, but devices can support as many heads as the hardware
is capable of (to date only dual and triple head hardware exist).

If the hardware has multiple output heads, the SetAc and GetActiveHead
functions can be used to change the active head being used.

tiveHead

See Also
SetActiveHead, GetActiveHead

SciTech SNAP, Graphics Architecture 468

Graphics Device Driver Reference

GetOptions

Returns the current device driver options from the graphics device driver.

Declaration
void NAPI GA_initFuncs::GetOptions(
 GA_options *options)

Prototype In
snap/graphics.h

Parameters
options Place to store the returned options information

Description
This function returns a structure which contains device driver configuration options for
the installed device driver.

Note: The dwSize member of the profile structure is intended for future compatibility, and must
be set to the size of the structure before calling this function. Only the number of bytes set
in the dwSize member will be copied into the callers structure.

See Also
SetOptions Options, GA_save

SciTech SNAP, Graphics Architecture 469

Graphics Device Driver Reference

GetUniqueFilename

Returns a unique filename for the chipset driver

Declaration
void NAPI GA_initFuncs::GetUniqueFilename(
 char *filename,
 int type)

Prototype In
snap/graphics.h

Parameters
filename Place to store the unique filename
type Type of of information being stored

Description
This function generates a unique filename for the current chipset configuration that is
used to store POST register information and other configuration options to disk at
runtime. Because the filename is unique, each card that is plugged into the system will
have a different set of persistent POST register state and configuration values. The type
parameter defines the type of information the unique filename will be used for, and
presently supports the following:

type Filename generated
1 modes\%chipname%.%revid%
2 options\%chipname%.%revid%
3 %chipname%.lcd
4 clock.%deviceindex%

This is an internal function and generally should not be called directly by the application
program or shell driver.

SciTech SNAP, Graphics Architecture 470

Graphics Device Driver Reference

GetVideoMode

Returns the currently active display mode number.

Declaration
N_uint32 NAPI GA_initFuncs::GetVideoMode(void)

Prototype In
snap/graphics.h

Return Value
Currently active display mode.

Description
This function returns the internal mode number for the currently active display mode.
This is mainly useful for finding out what the current display mode is set to when
applications are sharing an OS global device driver. Also note that when the SNAP
driver is first loaded, it will attempt to interrogate the hardware registers to determine
what the current text display mode is, and this function will return the id of the
equivalent SNAP display mode.

See Also
SetVideoMode, GetVideoModeInfo, GetCustomVideoModeInfo

SciTech SNAP, Graphics Architecture 471

Graphics Device Driver Reference

GetVideoModeInfo

Returns information about a specific display mode.

Declaration
N_int32 NAPI GA_initFuncs::GetVideoModeInfo(
 N_uint32 mode,
 GA_modeInfo *modeInfo)

Prototype In
snap/graphics.h

Parameters
mode Mode number to get information for
modeInfo Place to store the returned mode information (GA_modeInfo)

Return Value
0 on success, -1 on failure

Description
This function returns complete information about a specific SNAP display mode from
the mode list pointed to by the AvailableModes pointer in the GA_devCtx structure. This
function fills the GA_mo structure with detailed information about the requested
mode. This function will fail if you pass in a mode number that is not listed in the
AvailableModes list.

deInfo

This function returns the mode information for the currently active output device. To
find out information specific to a particular output device (ie: TV, LCD flat panel etc),
please use the GetVideoModeInfoExt function instead.

Note: Modes listed in the AvailableModes list may not be available at runtime, as they may be
mapped out based on the maximum pixel clock limits for the display controller, or based on
the frequency limits of the attached monitor.

Note: The calling code must first ensure that the dwSize member of the GA_modeInfo structure
is set to the size of the structure in bytes before calling this function. Only the number of
bytes set in the dwSize member will be copied into the callers structure.

See Also
GetVideoModeInfoExt etCustomVideoModeInfoExt
GetCurrentVideoModeInfo e

, GetCustomVideoModeInfo, G ,
, GetCurrentRefreshRate, SetVideoMod

SciTech SNAP, Graphics Architecture 472

Graphics Device Driver Reference

GetVideoModeInfoExt

Returns information about a display mode for a specific output device

Declaration
N_int32 NAPI GA_initFuncs::GetVideoModeInfoExt(
 N_uint32 mode,
 GA_modeInfo *modeInfo,
 N_int32 outputDevice)

Prototype In
snap/graphics.h

Parameters
mode Mode number to get information for
modeInfo Place to store the returned mode information

(GA_modeInfo)
outputDevice Output device flags to use (GA_Outp) utFlagsType

utputFlagsType

Return Value
0 on success, -1 on failure

Description
This function returns extened information about a specific SNAP display mode for a
specific output device selection. This is different to the normal GetVideoModeInfo
function, which returns the display mode information for the currently active output
device (ie: LCD, CRT or TV). The only difference is the addition of the outputDevice
parameter, which contains flags from the GA_O enumeration.

This function is useful if you are running on a different output device (ie: CRT display)
but with to find out the capabilities of a another output device (ie: LCD or TV), without
needing to first switch to that device and make it active.

Note: The calling code must first ensure that the dwSize member of the GA_modeInfo structure
is set to the size of the structure in bytes before calling this function. Only the number of
bytes set in the dwSize member will be copied into the callers structure.

See Also
GetVideoModeInfo, GetCustomVideoModeInfo, GetCustomVideoModeInfoExt,
GetCurrentVideoModeInfo, GetCurrentRefreshRate, SetVideoMode

SciTech SNAP, Graphics Architecture 473

Graphics Device Driver Reference

PerformDisplaySwitch

Performs or fix up the pending display mode switch

Declaration
void NAPI GA_initFuncs::PerformDisplaySwitch(void)

Prototype In
snap/graphics.h

Description
This function will perform the requested or pending display display mode switch. This
will be done in a non-destructive manner such that the screen and current hardware
acceleration state are preserved. This function is used to dynamically switch the active
display device and re-program the hardware as necessary for the new active display
device (ie: LCD/CRT/TV switching etc).

Note: Make sure you also call PostSwitchPhysicalResolution after calling this function!

See Also
PollForDisplaySwitch on, SwitchPhysicalResoluti , PostSwitchPhysicalResolution

SciTech SNAP, Graphics Architecture 474

Graphics Device Driver Reference

PollForDisplaySwitch

Polls the hardware to determine if a mode change is pending

Declaration
N_int32 NAPI GA_initFuncs::PollForDisplaySwitch(void)

Prototype In
snap/graphics.h

Return Value
True if a mode change occurred, false if not.

Description
This function polls the hardware to determine if a mode change should be processed,
and if so it processes the mode change and returns to the caller. This function should be
called about once every 250ms by the OS shell display driver to ensure that mode
changes are handled in a timely manner. Mode changes include switching the active
display device via system hot keys (ie: LCD to CRT to TV etc), as well as changing the
expansion settings on laptop systems etc. Internally SNAP drivers will use this function
to determione if a switch is pending or if a switch has already taken place that needs to
be 'fixed up'. If a switch is pending, the OS shell driver should then call the
PerformDisplaySwitch function to complete the process of performing the requested
display switch.

See Also
PerformDisplaySwitch on, SwitchPhysicalResoluti

SciTech SNAP, Graphics Architecture 475

Graphics Device Driver Reference

SaveCRTCTimings

Sets the current CRTC timings for the active display mode

Declaration
void NAPI GA_initFuncs::SaveCRTCTimings(
 GA_CRTCInfo *crtc)

Prototype In
snap/graphics.h

Parameters
crtc New CRTC timings to program and make the default

Description
This function sets the active CRTC timings for the active display mode in the device
driver, and also makes those timings the default timings for that display mode. After
this function is called, the hardware will have been re-programmed for the new CRTC
timings, and the internal database of CRTC timings will have been updated to reflect
these new timings. The CRTC timings will only be stored in memory, but they can be
made permanent with a call to the GA_saveCRT function which will flush the
changes to the disk based copy of the CRTC database.

CTimings

See Also
GetCRTCTimings, SetCRTCTimings, GetCurrentRefreshRate, SetGlobalRefresh,
GA_saveCRTCTimings, GA_restoreCRTCTimings, GA_getCRTCTimings,
GA_setCRTCTimings, GA_setDefaultRefresh

SciTech SNAP, Graphics Architecture 476

Graphics Device Driver Reference

SaveRestoreState

Save or restore the state of the display hardware.

Declaration
N_int32 NAPI GA_initFuncs::SaveRestoreState(
 N_int32 subfunc,
 void *saveBuf)

Prototype In
snap/graphics.h

Parameters
subfunc Sub-function number
saveBuf Buffer to save or restore data from.

Return Value
Size of the save buffer if subfunc is set to 2.

Description
This function provides support for saving and restoring the complete hardware state.
This is useful for debuggers and other utility software that needs to be able to
temporarily take over the display and restore it back to the original state it was in. This
function is responsible for saving and restoring all hardware registers related to the
graphics mode.

A buffer large enough to hold the entire hardware state must be allocated by the calling
code and passed in the saveBuf parameter. In order to determine the size of the
hardware state buffer to be allocated, the calling code should first call this function with
subfunc set to 2 to determine the size of the hardware save/restore state buffer.

The following subfunctions are defined:

subfunction description
0 Save hardware state to saveBuf
1 Restore hardware state from saveBuf
2 Return state buffer size

Note: This function is not yet implemented in the SNAP 1.0 spec, and it may be obsoleted in a
future specification.

SciTech SNAP, Graphics Architecture 477

Graphics Device Driver Reference

SetActiveHead

Set the currently active output head for the device

Declaration
N_int32 NAPI GA_initFuncs::SetActiveHead(
 N_int32 headIndex)

Prototype In
snap/graphics.h

Parameters
headIndex Index of head to make active (GA_multiHeadType)

Return Value
Index of previously active head (GA_multiHeadType)

tVideoModeInfo

Note that by default device drivers that support multiple heads will usually default to
gaActiveHeadClone mode, such that the same information will be display on all heads
initially.

GetNumberOfHeads etActiveHead

Description
This function is used to change the currently active output head for the device. Once the
active head is changed, all calls to Ge and SetVideoMode will be specific to
the newly active head.

See Also
, G

SciTech SNAP, Graphics Architecture 478

Graphics Device Driver Reference

SetCRTCTimings

Sets the currently active CRTC timings for the active display mode.

Declaration
void NAPI GA_initFuncs::SetCRTCTimings(
 GA_CRTCInfo *crtc)

Prototype In

This function sets the active CRTC timings for the active display mode in the device
driver. After this function is called, the hardware will have been re-programmed for the
new CRTC timings, but the internal CRTC database will not have been updated. Hence
the changes are temporary and the next time a display mode is set the values will be
restored to the previous settings.

SaveCRTCTimings RTCTimings

snap/graphics.h

Parameters
crtc Set CRTC timings to make active

Description

See Also
, GetC

SciTech SNAP, Graphics Architecture 479

Graphics Device Driver Reference

SetCustomVideoMode

Sets a specified custom display mode.

Declaration
N_int32 NAPI GA_initFuncs::SetCustomVideoMode(
 N_int32 xRes,
 N_int32 yRes,
 N_int32 bitsPerPixel,
 N_uint32 flags,
 N_int32 *virtualX,
 N_int32 *virtualY,
 N_int32 *bytesPerLine,
 N_int32 *maxMem,
 GA_CRTCInfo *crtc)

Parameters

Color depth for the display mode

Prototype In
snap/graphics.h

xRes Physical X resolution for the display mode
yRes Physical Y resolution for the display mode
bitsPerPixel

Mode initialisation flags
virtualX Requested virtual display X resolution (-1 to use default)
virtualY Requested virtual display Y resolution (-1 to use default)
bytesPerLine Returns the scanline width for the mode
maxMem Returns the maximum addressable display memory limit
crtc CRTC information block (required)

flags

0 on success, -1 on failure

Description

omVideoModeInfo

VideoMode

Type

ode

Return Value

This function is used to initialize a specific custom display mode. The custom display
mode does not have to be one of that macthes the resolution and refresh rate for modes
stored in the AvailableModes list of the GA_devCtx structure. Any value outside what the
hardware is capable of displaying, will cause this function to return a failure condition.
Make sure you first call GetCust to determine if the requested mode is
actually supported.

For the most part this function is identical to the regular Set function, but
works with custom display modes rather than the list of valid modes in the device
driver mode profile. Since internally SNAP drivers have no concept of display modes,
the SetVideoMode function internally ends up calling this function to actually initialise a
display mode.

This function also accepts the flags defined in GA_modeFlags enumeration passed in
the flags parameter. These flags change the way that the selected display mode mode is
initialized, and are identical to the flags passed to the regular SetVideoM function.

SciTech SNAP, Graphics Architecture 480

Graphics Device Driver Reference

Note: This function requires a set of CRTC parameters to be passed in the crtc parameter,
unlike SetVideoMode.

See Also
SetVideoMode tDisplayOutput
GetClosestPixelClock

, GetVideoModeInfo, GetCustomVideoModeInfo, Se ,

SciTech SNAP, Graphics Architecture 481

Graphics Device Driver Reference

SetDisplayOutput

Sets the output device(s) for the display

Parameters

lagsType

SetDisplayOutput

agsType

Declaration
N_int32 NAPI GA_initFuncs::SetDisplayOutput(
 N_int32 device)

device Device flags for the displays to make active
(GA_OutputF)

Return Value
Flags of previously active devices or -1 on error.

Description
This function allows the application to switch the currently active display between the
CRT, LCD or TV etc. Check that the mode information indicates that LCD display or
TVOut display is supported before trying to switch to that display mode or this function
will fail. You can also combine the flags together so that

(gaOUTPUT_CRT | gaOUTPUT_LCD) will switch to simultaneous
display on both the LCD and CRT display (assuming the device supports this mode of
operation; if not it will fail). Likewise SetDisplayOutput(gaOUTPUT_CRT |
gaOUTPUT_TV) will display on both the CRT display and TVOut connector. Please
check the GA_OutputFl for the list of valid identifiers that can be passed to this
function.

SciTech SNAP, Graphics Architecture 482

Graphics Device Driver Reference

SetGlobalRefresh

Sets the global default refresh rate for all high resolution display modes.

Declaration
void NAPI GA_initFuncs::SetGlobalRefresh(
 N_int32 refresh)

Parameters

This function will set the default refresh rate for all high resolution display modes (all
modes >= 640x480) to the specified refresh rate. If the hardware cannot achieve the
specified refresh rate, the next lowest refresh available will be made the default instead.
The changes are only made to the in memory copy of the CRTC database, but they can
be made permanent with a call to the GA_saveCRTCTimings function.

SetCRTCTimings mings rentRefreshRate
GA_saveCRTCTimings
GA_setCRTCTimings A_setDefaultRefresh

Prototype In
snap/graphics.h

refresh New refresh rate to make the global default

Description

See Also
, GetCRTCTimings, SetCRTCTi , GetCur ,

, GA_restoreCRTCTimings, GA_getCRTCTimings,
, G

SciTech SNAP, Graphics Architecture 483

Graphics Device Driver Reference

SetModeProfile

Sets the current mode profile for the graphics device driver.

Parameters

This function installs a new mode profile into the driver to be used as the default mode
profile. The mode profile is a structure which contains configuration information about
the available display resolutions for the installed device driver. A default mode profile is
shipped with the graphics device drivers, but a new mode profile can be downloaded at
any time. Since SNAP drivers internally do not have any concept of specific display
resolutions, the mode profile is used to tell the SNAP driver what specific display
resolutions the driver should export to user applications. Hence changing the mode
profile can be used to add new display modes, or remove unwanted display modes from
the list of display modes supported by the driver.

odeProfile

Declaration
void NAPI GA_initFuncs::SetModeProfile(
 GA_modeProfile *profile)

Prototype In
snap/graphics.h

profile Mode profile to make active for the display driver.

Description

The mode profile may be made permanent with a call to the GA_saveM
function, to be used every time a SNAP driver is loaded from disk.

Note: All mode in the mode profile must also have the associated CRTC tables added to the
CRTC database before it will work (created using GTF if the mode is a new custom display
mode).

Note: The dwSize member of the profile structure is intended for future compatibility, and must
be set to the size of the structure before calling this function. Only the number of bytes set
in the dwSize member will be copied from the callers structure.

See Also
GetModeProfile, GetVid , GA_saveM eoModeInfo odeProfile

SciTech SNAP, Graphics Architecture 484

Graphics Device Driver Reference

SetMonitorInfo

Sets the currently configured monitor information for the device.

Declaration

snap/graphics.h

void NAPI GA_initFuncs::SetMonitorInfo(
 GA_monitor *monitor)

Parameters
New monitor information to make active

GA_saveMonitorInfo

GetMonitorInfo MonitorInfo

Prototype In

monitor

Description
This function sets the currently configured monitor for the device. Once this function
has been called, all SNAP display modes will be filtered based on the capabilities
determined by the monitor information that was made active. Note that this function
only updates the in memory copy of the active monitor. To make this permanent, call

 which will save the monitor record to disk.

See Also
, GA_save , GA_detectPnPMonitor

SciTech SNAP, Graphics Architecture 485

Graphics Device Driver Reference

SetOptions

Sets the device driver options for the graphics device driver.

Declaration

snap/graphics.h

Device driver otions to make active for the display driver.

Description

ns

void NAPI GA_initFuncs::SetOptions(
 GA_options *options)

Prototype In

Parameters
options

This function installs a new set of device driver options that control the operation of the
device driver at runtime. A default set of options is always built into the device driver,
but the options can be changed at any time. The options may be made permanent with a
call to the GA_saveOptio function.

Note: The dwSize member of the profile structure is intended for future compatibility, and must
be set to the size of the structure before calling this function. Only the number of bytes set
in the dwSize member will be copied from the callers structure.

See Also
GetOptions Options, GA_save

SciTech SNAP, Graphics Architecture 486

Graphics Device Driver Reference

SetRef2dPointer

Pass a pointer to the ref2d structure to the device driver

Prototype In

This is an internal function that is used by the 2d reference rasteriser library to register
itself with the hardware driver, so the hardware driver can call back into the ref2d
driver to access it's internal functions. This is mostly used by drivers implementing
hardware video acceleration functions, so they driver can call the ref2d buffer manager
to allocate and manager offscreen video memory buffers.

etSoftwareRenderFuncs

Declaration
void NAPI GA_initFuncs::SetRef2dPointer(
 struct _REF2D_driver *ref2d)

snap/graphics.h

Description

SEE ALSO S

SciTech SNAP, Graphics Architecture 487

Graphics Device Driver Reference

SetSoftwareRenderFuncs

Sets the software rendering callback vectors in the hardware driver

Prototype In

Description

etRef2dPointer

Declaration
void NAPI GA_initFuncs::SetSoftwareRenderFuncs(
 GA_2DRenderFuncs *softwareFuncs)

snap/graphics.h

This is an internal function that is used by the 2d reference rasteriser library to register
all the current software rendering functions with the hardware driver. This is done after
the software rendering functions are loaded and initialised by the application or shell
driver. These functions are used internally by the SNAP device driver to fall back to
software rendering to handle special cases where the hardware cannot implement
certain features or to work around hardware bugs.

This function should generally not be called directly by application programs (unless
you have completely replaced the 2d reference rasteriser component).

SEE ALSO S

SciTech SNAP, Graphics Architecture 488

Graphics Device Driver Reference

SetVideoMode

Sets a specified display mode.

Declaration
N_int32 NAPI GA_initFuncs::SetVideoMode(
 N_uint32 mode,
 N_int32 *virtualX,
 N_int32 *virtualY,
 N_int32 *bytesPerLine,
 N_int32 *maxMem,
 N_int32 refreshRate,
 GA_CRTCInfo *crtc)

bytesPerLine

GA_devCtx
GA_modeFlagsType

Prototype In
snap/graphics.h

Parameters
mode Mode number to set, including flags
virtualX Requested virtual display X resolution (-1 to use default)
virtualY Requested virtual display Y resolution (-1 to use default)

Returns the scanline width for the mode
maxMem Returns the maximum addressable display memory limit
refreshRate Refresh rate to set (0 for default)
crtc CRTC information block if afRefreshCtrl specified

Return Value
0 on success, -1 on failure

Description
This function is used to initialize a specified display mode. The mode number passed to
this function should be one of the values stored in the AvailableModes list of the

 structure combined with any of the valid mode set flags defined in the
 enumeration. Any value outside of this set of values will cause this

function to fail.

When the graphics mode is initialized, you can pass in a specific virtual X resolution to
enable a wide virtual display mode, or an interleaved stereo display mode. If you pass in
a value of -1, the physical X resolution for the display mode will be used to initialise the
virtual X resolution. If you pass in a value other than -1, the driver will attempt to satisfy
your request with the next largest value that the controller can actually support. The
value programmed will be returned in the virtualX parameter on exit. It is possible that
the graphics mode cannot have the scanline width changed, or that the scanline width
requested was too large for the graphics mode to handle, in which case this function will
fail.

The virtualY parameter should be filled in with the virtual desktop height if you plan to
do virtual panning, and is mostly used to compute the number of available display
pages for page flipping etc, as well as where the start of offscreen memory is for the

SciTech SNAP, Graphics Architecture 489

Graphics Device Driver Reference

offscreen buffer manager. If this value is set to -1, the physical Y resolution of the display
mode will be used to initialise the virtual Y resolution. The actual value used will be
returned in the virtualY parameter on exit.

On exit this function returns the number of bytes in a logical scanline in the
bytesPerLine parameter. This can then be used to implement software rendering directly
to the hardware linear framebuffer. The maximum addressable display memory limit is
returned in the 'maxMem' parameter and defines the byte offset of the highest linear
framebuffer address that can be used by the application. The amount of addressable
framebuffer display memory may not extend to the end of physical display memory due
to memory used by the driver for hardware cursors and patterns etc.

You can also elect to either use the default refresh rate for the display mode or force a
speific refresh rate with the refreshRate parameter. If a value of 0 is passed for the
refreshRate parameter, the user selected default refresh rate will be use. A value other
than zero will try to set the requested refresh rate from the table of available refresh
rates that the mode supports. Make sure you first check the list of available refresh rates
reported by the GetVideoModeInfo function before calling this function, or this function
will fail. For generic GTF refresh rate control use the gaRefreshCtrl flag and the
refreshRate parameter will be ignored. Instead the CRTC timings passed in the crtc
parameter will be used for the display mode. This is most useful for unusual refresh
rates not listed in the refresh rate list, such as 120Hz and higher refresh rates of LC
stereo shutter glasses, or to hit exact CRTC timings for special flat panel or fixed
frequency monitors.

Note: It is highly recommended that applications do not change the user selected default refresh
rate except for special circumstances where a specific refresh rate is required (such as
120Hz stereo for instance).

This function also accepts the flags defined in GA_modeFlags enumeration logically
OR'ed with the passed display mode number. These flags change the way that the
selected display mode mode is initialized as follows:

Type

Info

The gaDontClear flag is used to specify that the video memory should not be cleared
when the graphics mode is initialized. By default the video memory will be cleared to all
0's by the driver.

The gaLinearBuffer flag is used to specify that the application wishes to enable the linear
framebuffer version of the graphics mode. On many controllers, the acceleration features
are only available in the linear framebuffers modes. Also note that on many new PCI
devices, PCI burst mode is only enabled in the linear framebuffer modes, so these modes
should be used whenever possible for maximum performance. Make sure that you check
the gaHaveLinearBuffer flag in the Attributes member of the GA_mode structure to
determine if this is supported in the selected display mode.

The ga6BitDAC flag is used to force 8-bit display modes to set the RAMDAC to a VGA
compatible 6-bit per primary mode, rather than the default 8-bit per primary mode. This
is generally used to make the display mode compatible with the default VESA VBE and

SciTech SNAP, Graphics Architecture 490

Graphics Device Driver Reference

VGA display modes. Normally applications will not want to set this but instead leave
the mode in the default 8-bits per primary setting. Note also that this has no effect on 15-
bpp and higher display modes.

The gaNoAccel flag is used to initialise the display mode without initialising the
hardware acceleration portions of the graphics chipset. This is generally used to
implement VESA VBE compatible display modes where the hardware accelerator
functions are not used (and the hardware accelerator state will not be touched or
changed).

The gaRefreshCtrl flag can be set to enable generic GTF refresh rate control for the
display mode. If this bit is set, the mode will be using the CRTC parameters and pixel
clock values passed in the crtc parameter, rather than using the value passed in the
refreshRate parameter. This allows the application program or operating system drivers
to calculate a new set of CRTC values (preferrably using the VESA Generalized Timing
Formula, or GTF specification) for the mode, and allow the refresh rate to be set to any
supported value for the hardware.

The gaWindowedMode flag is specific to emulation display drivers such as the DirectX
display driver. These drivers are implemented on top of an existing abstraction layer,
and this flag is used to inform the driver that the mode being set is actually a windowed
mode (ie: switch back to the regular desktop display mode).

The gaPartialModeSet flag can be set to tell the SNAP driver to only perform a partial
mode set instead of a complete mode set. When this flag is used, the SNAP driver will
only re-program the CRTC controller and pixel clock, but will not re-program the
graphics engine components. This flag is primarily used to enable SNAP drivers to
change the CRTC timings and refresh rate for an existing display driver without
destroying the remaining state of the graphics card.

Note: When a linear framebuffer mode is enabled, it is the responsibility of the driver to ensure
that all VGA memory resources such as the 0xA0000-0xBFFFF regions are disabled if
possible. Ensuring these regions are disabled provides for the maximum performance when
multiple display controllers are present in the system.

See Also
SetCustomVideoMode VideoModeInfo omVideoModeInfo layOutput
GetClosestPixelClock

, Get , GetCust , SetDisp ,

SciTech SNAP, Graphics Architecture 491

Graphics Device Driver Reference

SwitchPhysicalResolution

Switches the physical resolution and refresh rate for a display mode

Declaration
N_int32 NAPI GA_initFuncs::SwitchPhysicalResolution(
 N_int32 physicalXResolution,
 N_int32 physicalYResolution,
 N_int32 refreshRate)

Prototype In
snap/graphics.h

Parameters
physicalXResolution New physical X resolution to program
physicalYResolution New physical Y resolution to program
refreshRate New refresh rate to program

Return Value
0 on success, -1 on failure

Description
This function is used to switch the physical resolution or refresh rate for the current
display mode. This will be done in a non-destructive manner such that the screen and
current hardware acceleration state are preserved. This function is used primarily to
enable and disable different levels of hardware panning or 'zooming' in the display
driver (ie: 640x480 physical display resolution, 1024x768 virtual). It can also be used to
change the refresh rate without changing the physical resolution.

If the physicalXResolution or physicalYResolution parameters are set to -1, the physical
resolution of the screen is obtained from the physical resolution of the currently active
display mode, otherwise the passed in values are used. The refresh rate is always used,
but if you pass in a value of 0, the default refresh rate for the current display mode will
be used to program the hardware.

See Also
PollForDisplaySwitch mDisplaySwitch solution, Perfor , SwitchPhysicalRe

SciTech SNAP, Graphics Architecture 492

Graphics Device Driver Reference

GA_largeInteger

Declaration
typedef u64 GA_largeInteger

Prototype In
snap/graphics.h

Description
Defines the structure for holding 64-bit integers used for storing the values returned by
the precision timing functions. The precision timing functions are used internally by the
the SNAP Graphics drivers for software stereo support, however the granularity of the
timing functions is variable. Generally a granularity of around 1us is desired for
maximum accuracy. Where possible these import functions should be implemented
using the Intel Pentium RDTSC instruction or equivalent (with time readings
normalised to 1us granularity to avoid overflow internally).

Members
low Low 32-bits of the 64-bit integer
high High 32-bits of the 64-bit integer

SciTech SNAP, Graphics Architecture 493

Graphics Device Driver Reference

GA_layout

Declaration
typedef struct {
 N_uint32 left;
 N_uint32 top;
 N_uint32 right;
 N_uint32 bottom;
 } GA_layout

Prototype In
snap/graphics.h

Description
Structure used to determine the layout in multi-controller modes. The layout is defined
as adajacent rectangles for each device, and should be set up using the multi-controller
setup program.

Members
left Left coordinate for layout rectangle
top Top coordinate for layout rectangle
right Right coordinate for layout rectangle
bottom Bottom coordinate for layout rectangle

SciTech SNAP, Graphics Architecture 494

Graphics Device Driver Reference

GA_loaderFuncs

Prototype In
snap/graphics.h

Description
Function group containing all internal loading and unloading functions for the device.
These functions are used internally by the SNAP device driver loading mechanism and
should never be called directly by application or shell driver code.

SciTech SNAP, Graphics Architecture 495

Graphics Device Driver Reference

InitDriver

Initialises the driver for operation

Declaration
N_int32 NAPI GA_loaderFuncs::InitDriver(void)

Prototype In
snap/graphics.h

Return Value
nOK on success, SNAP error code if not (see N_errorType)

Description
This function is called as part of the internal initialisation process for the SNAP driver,
so application code should never call this function directly.

See Also
InitDriver ver, QueryFunctions, UnloadDri

SciTech SNAP, Graphics Architecture 496

Graphics Device Driver Reference

QueryFunctions

Returns the function pointers for the specified function group.

Declaration
ibool NAPI GA_loaderFuncs::QueryFunctions(
 N_uint32 id,
 N_int32 safetyLevel,
 void _FAR_ *funcs)

Prototype In
snap/graphics.h

Parameters
id Identifier for the function group to get pointers for
safetyLevel Safety level requested
funcs Pointer to function block to fill in

Return Value
True if the requested function group is available, false if not.

Description
This function is the main function that is used by the graphics application code to get a
block of function pointers for a specified function group. The function groups are
defined GA_funcGroupsType enumeration, and breaks up the functions in the device
driver API into groups of logically similar functions. For instance to get the block of
functions for the hardware cursor, you would call this function with the
GA_GET_CURSORFUNCS identifier.

The safetyLevel parameter defines the safety level of those functions that are returned
by the driver. The safety level essentially defines what runtime requirements those
functions have, such as requiring kernel mode access to registers etc. There are currently
three safety levels defined:

safetyLevel Description
0 Level 0 is defined as 'unsafe', which means that the

functions must be executed in kernel mode as they require
access to I/O space registers. Essentially requesting level 0
function pointers will return pointers to all available
functions in that function group.

1 Level 1 is defined as 'mostly safe', which means that the
functions only access memory mapped registers and do
not require any I/O space register access. These functions
can thus be exectued in user space provided that all the
memory mapped register regions are mapped into user
space.

2 Level 2 is defined as 'safe', which means that the functions
only access memory mapped registers via the 'safe'

SciTech SNAP, Graphics Architecture 497

Graphics Device Driver Reference

IOMemMaps[2] and IOMemMaps[3] regions (the first two
will only be mapped into kernel space by the loader code).
The idea here is that the driver separates 'safe' and 'unsafe'
registers (defined below).

Note that with the above defined safety levels, it is possible for the display driver in the
operating system to provide a compromise between maximum performance and
maximum security as a user level setting. Maximum security would be achieved if the
graphics functions where only ever called from kernel mode, but would incur the
overhead of user mode to kernel mode switching for all graphics output. Better
performance can be achieved if safety level 2 functions are executed in the user mode
component of the display driver, but this requires specific hardware that is designed to
separate 'safe' and 'unsafe' registers by at least 8Kb (so they can be indivudally mapped
into user+kernel or just kernel space). Even higher performance can be achieved if all
functions which only use memory mapped register access are executed in user space,
which can be done with all modern PC graphics hardware. However this does expose
the possibility of an errant application accidentally writing to the user space registers
and causing the graphics hardware to lock.

Note: Application code should not call this function directly, but instead call
GA_queryFunctions.

Note: To allow for future compatibility, all function blocks begin with a dwSize member. The
caller is expected to fill in the dwSize member with the size of the function block being
retrieved before calling QueryFunctions. If the driver exports more functions than the
application knows about, only a subset of the functions are copied to the application. If the
application expects more functions than the driver provides, the non-existant functions
are set to NULL pointers by QueryFunctions, and the remainder copies from the driver.

Note: The OS loader code will only map the IOMemMaps[2] and IOMemMaps[3] regions into
user space, and will map all memory mapped I/O regions into kernel space. This allows
unsafe registers (that would potentially cause the system to lock) to not be mapped into
user space and potentially compromising system stability.

Note: This mechanism also provides for a clean and simple upgrade path for future drivers,
while ensuring maximum compatibility with existing specifications. New functions for a
particular group can simply be added to the end of the function group to extend that
group. Totally new function groups can be added by defining new identifiers for that
function group, and older drivers will return a NULL if that funciton group is requested.
Finally if a function group requires a complete redesign to achieve maximum peformance
for next generation hardware, a new extended function group can be defined (and drivers
can continue to export the older and slower function group for backwards compatibility).

Note: Safety levels other than 0 are not implemented in SNAP 1.0

See Also
InitDriver ver, QueryFunctions, UnloadDri

SciTech SNAP, Graphics Architecture 498

Graphics Device Driver Reference

UnloadDriver

Prepare the device driver for unloading

Declaration
void NAPI GA_loaderFuncs::UnloadDriver(void)

Prototype In
snap/graphics.h

Description
This function is called as part of the internal device driver unloading process. This
function is called by the loader code when a device driver is about to be unloaded,
giving the device driver a chance to free up any internal memory allocations ready to be
unloaded completely.

Application code should never call this function directly.

See Also
InitDriver ver, QueryFunctions, UnloadDri

SciTech SNAP, Graphics Architecture 499

Graphics Device Driver Reference

GA_mixCodesType

Declaration
typedef enum {
 GA_R2_BLACK,
 GA_R2_NOTMERGESRC,
 GA_R2_MASKNOTSRC,
 GA_R2_NOTCOPYSRC,
 GA_R2_MASKSRCNOT,
 GA_R2_NOT,
 GA_R2_XORSRC,
 GA_R2_NOTMASKSRC,
 GA_R2_MASKSRC,
 GA_R2_NOTXORSRC,
 GA_R2_NOP,
 GA_R2_MERGENOTSRC,
 GA_R2_COPYSRC,
 GA_R2_MERGESRCNOT,
 GA_R2_MERGESRC,
 GA_R2_WHITE,
 GA_REPLACE_MIX = GA_R2_COPYSRC,
 GA_AND_MIX = GA_R2_MASKSRC,
 GA_OR_MIX = GA_R2_MERGESRC,
 GA_XOR_MIX = GA_R2_XORSRC,
 GA_NOP_MIX = GA_R2_NOP
 } GA_mixCodesType

Prototype In
snap/graphics.h

Description
Logical mix operation codes for accelerated rendering functions that support mixes. The
set of mix codes is the standard Microsoft Raster Operation (ROP2) codes between two
values. We define our ROP2 codes as being between the source and destination pixels
for blt's, between the foreground or background color and the destination pixels for
solid and mono pattern fills and between the pattern pixels and the destination pixels
for color pattern fills. It is up to the driver to do any necessary translation between these
generic ROP2 codes and each different type of hardware mix code internally. Next to
each code is the equivalent Microsoft defined ROP3 code between source and
destination pixels.

Note: Some graphics controllers may not support all mix codes, so you must use the
GetMixTable function to determine the set of mix codes that the controller supports.
Setting a mix code that is not listed in the returned mix table will result in undefined
behaviour.

Members
GA_R2_BLACK 0
GA_R2_NOTMERGESRC DSon
GA_R2_MASKNOTSRC DSna
GA_R2_NOTCOPYSRC Sn
GA_R2_MASKSRCNOT SDna
GA_R2_NOT Dn

SciTech SNAP, Graphics Architecture 500

Graphics Device Driver Reference

GA_R2_XORSRC DSx
GA_R2_NOTMASKSRC DSan
GA_R2_MASKSRC DSa
GA_R2_NOTXORSRC DSxn
GA_R2_NOP D
GA_R2_MERGENOTSRC DSno
GA_R2_COPYSRC S
GA_R2_MERGESRCNOT SDno
GA_R2_MERGESRC DSo
GA_R2_WHITE 1
GA_REPLACE_MIX Replace mode
GA_AND_MIX AND mode
GA_OR_MIX OR mode
GA_XOR_MIX XOR mode
GA_NOP_MIX Destination pixel unchanged

SciTech SNAP, Graphics Architecture 501

Graphics Device Driver Reference

GA_mode

Declaration
typedef struct {
 short xRes;
 short yRes;
 uchar bits;
 } GA_mode

Prototype In
snap/graphics.h

Description
Structure used to describe the available display modes in the SNAP Graphics options
structure. This allows the end user to add and delete available display modes from the
SNAP Graphics drivers easily using our generic SNAP Graphics driver interface.

Members
xRes Horizontal pixel resolution
yRes Vertical pixel resolution
bits Color depth per pixel (0 = text mode)

SciTech SNAP, Graphics Architecture 502

Graphics Device Driver Reference

GA_modeFlagsType

Declaration
typedef enum {
 gaDontClear = 0x8000,
 gaLinearBuffer = 0x4000,
 ga6BitDAC = 0x2000,
 gaNoAccel = 0x1000,
 gaRefreshCtrl = 0x0800,
 gaWindowedMode = 0x0400,
 gaPartialModeSet = 0x0200,
 gaModeMask = 0x01FF
 } GA_modeFlagsType

Prototype In
snap/graphics.h

Description
This enumeration defines the flags for combining with graphics mode numbers to be
passed to the SetVideoMode function.

Members
gaDontClear Don't clear display memory
gaLinearBuffer Enable linear framebuffer mode
ga6BitDAC Set the mode with a 6-bit RAMDAC instead of 8
gaNoAccel Set the mode without any acceleration support
gaRefreshCtrl Enable refresh rate control
gaWindowedMode Initialise for use in the current desktop mode
gaPartialModeSet Initialise the driver internals, but don't program

hardware
gaModeMask Mask to remove flags and extract VBE mode number

SciTech SNAP, Graphics Architecture 503

Graphics Device Driver Reference

GA_modeInfo

Declaration
typedef struct {
 N_uint32 dwSize;
 N_uint32 Attributes;
 N_uint16 XResolution;
 N_uint16 YResolution;
 N_uint8 XCharSize;
 N_uint8 YCharSize;
 N_uint32 BytesPerScanLine;
 N_uint32 MaxBytesPerScanLine;
 N_uint32 MaxScanLineWidth;
 N_uint32 MaxScanLines;
 N_uint32 LinearHeapStart;
 N_uint32 MaxLinearOffset;
 N_uint16 BitsPerPixel;
 GA_pixelFormat PixelFormat;
 N_uint16 MaxBuffers;
 N_uint32 MaxPixelClock;
 N_int32 DefaultRefreshRate;
 N_int32 _FAR_ *RefreshRateList;
 N_uint32 BitmapStartAlign;
 N_uint32 BitmapStridePad;
 N_uint32 MonoBitmapStartAlign;
 N_uint32 MonoBitmapStridePad;
 GA_bltFx _FAR_ *BitBltCaps;
 GA_videoInf _FAR_ * _FAR_ *VideoWindows;
 struct _GA_3DState _FAR_ *HW3DCaps;
 N_flt32 MaxOOZ;
 N_flt32 MaxOOW;
 N_flt32 MaxOOS;
 N_flt32 MaxOOT;
 N_uint32 DepthFormats;
 N_uint32 DepthStartAlign;
 N_uint32 DepthStridePad;
 N_uint32 TextureFormats;
 N_uint32 TextureStartAlign;
 N_uint32 TextureStridePad;
 N_uint32 TextureMaxX;
 N_uint32 TextureMaxY;
 N_uint16 TextureMaxAspect;
 N_uint32 StencilFormats;
 N_uint32 StencilStartAlign;
 N_uint32 StencilStridePad;
 N_uint32 LinearSize;
 N_uint32 LinearBasePtr;
 N_uint32 AttributesExt;
 N_uint16 PhysicalXResolution;
 N_uint16 PhysicalYResolution;
 } GA_modeInfo

Prototype In
snap/graphics.h

Description
Graphics mode information block. This structure contains detailed information about
the capabilities and layout of a specific graphic mode.

SciTech SNAP, Graphics Architecture 504

Graphics Device Driver Reference

The Attributes member contains a number of flags that describes certain important
characteristics of the graphics mode, and the values this member contains are defined in
the GA_Attri . buteFlagsType

The XResolution and YResolution specify the logical width and height in pixel elements
for this display mode. The logical resolution is the resolution of all available pixels in the
display which may be larger than the physical resolution if the mode has hardware
panning enabled. Hardware panning is enabled if the maximum physical resolution of
the display device does not support the specific mode, such as when hot switching
between a CRT monitor and an LCD panel or TV output device.

The BytesPerScanLine member specifies how many full bytes are in each logical
scanline. The logical scanline could be equal to or larger than the displayed scanline, and
can be changed when the display mode is first initialized.

The MaxBytesPerScanLine and MaxScanLineWidth members define the maximum
virtual framebuffer coordinates that can be initialised for the mode, in both bytes and
pixels respectively. If an attempt is made to initialize a graphics mode with values larger
than these values, the mode set will fail.

The MaxScanLines member holds the total number of scanlines available in that
graphics mode when initialised with the default scanline width. This field combined
with BytesPerScanLine can be used to determine the maximum addressable display
memory for drawing operations. This can also be used to determine how large a virtual
screen image can be before initialising a graphics mode. This field also determines the
addressable limit for X/Y based drawing functions in offscreen video memory.

The LinearHeapStart member determines the start of the linear only heap, if one is
available. Some hardware has restrictions on the addressable memory for the (x,y)
coordinates passed to the 2D drawing functions. If the hardware supports DrawRectLin
and the BitBltLin family of functions, the memory past the (x,y) coordinate restriction
can be accessed using those functions. Hence this member determines the start of this
linear only heap as a byte offset from the beginning of display memory. Memory in the
linear only heap can only be accessed directly via the linear framebuffer, or using
DrawRectLin or the BitBitLin family of blitting functions. None of the X/Y based
drawing functions can be used to draw to the linear only heap.

The MaxLinearOffset member hold the maximum addressable display memory offset
for linear drawing functions (DrawRectLin, BitBltLin etc). If the hardware has
restrictions on the addressable memory for the X/Y drawing functions, the linear only
heap resides between LinearHeapStart and MaxLinearOffset. If the maximum
addressable scanline value for a display mode is past the end of display memory
(common for high resolution modes), then LinearHeapStart = MaxLinearOffset which
indicates that there is no linear only heap for that display mode.

SciTech SNAP, Graphics Architecture 505

Graphics Device Driver Reference

Note: There may well be some memory used by the graphics hardware for caching the hardware
cursor, patterns and other data between the end of (MaxScanLines * BytesPerScanLine)
and LinearHeapStart. Hence the application software must never write to the memory
between (MaxScanLines * BytesPerScanLine) and LinearHeapStart.

The BitsPerPixel member specifies the number of bits per pixel for this display mode.
For 5:5:5 format RGB modes this should contain a value of 15, and for 5:6:5 format RGB
modes this should contain a value of 16. For 8:8:8 bit RGB modes this should contain a
value of 24 and for 8:8:8:8 RGBA modes this should contain a value of 32. For 24 and
32bpp modes, the application should look at the pixel format mask values (see below) to
determine the actual format of the pixels within the display buffer.

The MaxBuffers member specified the maximum number of display buffers that can be
allocated in video memory for page flipping. This value is a convenience function only,
and can be computed manually from the value of MaxScanLines / YResolution.

The MaxPixelClock member specifies the maximum possible pixel dot clock that can be
selected in this display mode when a refresh controlled mode is selected. Any attempt to
select a higher pixel clock will cause the mode set to fail. This member can be used to
determine what the maximum available refresh rate for the display mode will be.

The RedMaskSize, GreenMaskSize, BlueMaskSize and RsvdMaskSize members define
the size, in bits, of the red, green, and blue components of an RGB pixel respectively. A
bit mask can be constructed from the MaskSize members using simple shift arithmetic.
For example, the MaskSize values for an RGB 5:6:5 mode would be 5, 6, 5, and 0, for the
red, green, blue, and reserved members respectively.

The RedFieldPosition, GreenFieldPosition, BlueFieldPosition and RsvdFieldPosition
members define the bit position within the RGB pixel of the least significant bit of the
respective color component. A color value can be aligned with its pixel member by
shifting the value left by the FieldPosition. For example, the FieldPosition values for an
RGB 5:6:5 mode would be 11, 5, 0, and 0, for the red, green, blue, and reserved members
respectively.

The BitmapStartAlign member defines the alignment requirements in bytes for offscreen
memory bitmaps for this graphics mode. If the value in here is set to 8 for instance, then
the start for all offscreen bitmaps must be aligned to an 8 byte boundary in order to be
used for offscreen bitmap blitting. Note that the BitmapStartAlign member also defines
the alignment requirements for all buffers passed to the SetDrawBuffer function.

The BitmapStridePad member defines the alignment requirements in bytes for the stride
of offscreen memory bitmaps (the number of bytes to move from one line of the bitmap
to the next). If the value in here is set to 8 for instance, then the number of bytes for each
scanline in the offscreen bitmap must be padded out to a multiple of 8 (inserting zeros if
necessary when downloading a source bitmap to offscreen memory). Note that the
BitmapStridePad member also defines the padding requirements for all buffers passed
to the SetDrawBuffer function.

SciTech SNAP, Graphics Architecture 506

Graphics Device Driver Reference

The MonoBitmapStartAlign member defines the alignment requirements in bytes for
monochrome offscreen memory bitmaps for this graphics mode, which are used by the
PutMonoImageMSBLin and PutMonoImageLSBLin functions. If the value in here is set
to 8 for instance, then the start for all monochrome offscreen bitmaps must be aligned to
an 8 byte boundary in order to be used by the PutMonoImageMSBLin and
PutMonoImageLSBLin functions.

The MonoBitmapStridePad member defines the alignment requirements in bytes for the
stride of monochrome offscreen memory bitmaps (the number of bytes to move from
one line of the bitmap to the next). If the value in here is set to 8 for instance, then the
number of bytes for each scanline in the monochrome offscreen bitmap must be padded
out to a multiple of 8 (inserting zeros if necessary when downloading a source bitmap to
offscreen memory).

The RefreshRateList member contains a list of all valid refresh rates supported by the
display mode which can be passed to the SetVideoMode function. Interlaced modes are
indicated by a negative refresh rate (ie: 48Hz Interlaced is -48). The current default
refresh rate is stored in the DefaultRefreshRate member, and except for special
circumstances the default refresh rate set by the user should be used rather than
overriding the refresh rate.

The BitBltCaps member defines the extended hardware BitBlt capabilities for the
graphics mode, and points to a static GA_bltFx structure. Refer to the documentation of

 to determine what this structure contains. GA_bltFx

_videoIn

uteExtFlagsType

The VideoWindows member defines the hardware video capabilities for each of up to a
maximum number of hardware video overlay windows. The list of hardware video
overlay window capabilities is terminated with a NULL pointer. For instance if only 2
hardware video windwos are supported, the first two entries in this array would point
to valid GA_videoInf structures, while the third would contain a NULL terminating the
list. Refer to the documentation of GA f to determine what these structures
contains.

The HW3DCaps member defined the hardware 3D capabilities for the graphics mode,
and points to a static GA_3DState structure. Refer to the documentation of GA_3DState
to determine what this structure contains.

The LinearSize member is the 32-bit length of the linear frame buffer memory in bytes.
In can be any length up to the size of the available video memory. The LinearBasePtr
member is the 32-bit physical address of the start of frame buffer memory when the
controller is in linear frame buffer memory mode for this particular graphics mode. If
the linear framebuffer is not available, then this member will be zero.

The AttributesExt member contains a number of extended flags that describes certain
important characteristics of the graphics mode, and the values this member contains are
defined in the GA_Attrib .

SciTech SNAP, Graphics Architecture 507

Graphics Device Driver Reference

The PhysicalXResolution and PhysicalYResolution specify the physical width and height
in pixel elements for this display mode. The physical resolution is the resolution of all
visible pixels on the display, and may be smaller than the logical resolution if the mode
has hardware panning enabled.

Note: The LinearSize and LinearBasePtr members are duplicated in the mode information block
because they may possibly change locations in memory depending on the display mode.
Normally applications will always use the value stored in the the GA_devCtx LinearMem
pointer to directly access the framebuffer (which is automatically adjusted for you),
however if the information about the framebuffer starting address needed to be reported to
other applications directly, the values stored in this mode information block should be
used.

Note: The memory pointed to by the RefreshRateList, BitBltCaps, VideoWindows and
HW3DCaps fields will be reused the next time GetVideoModeInfo is called, so do not rely
on the information in these fields to remain the same across calls to this function.

Note: The dwSize member is intended for future compatibility, and should be set to the size of
the structure as defined in this header file. Future drivers will be compatible with older
software by examiming this value.

Members
dwSize Set to size of structure in bytes
Attributes Mode attributes
XResolution Logical horizontal resolution in pixels
YResolution Logical vertical resolution in lines
XCharSize Character cell X dimension for text modes
YCharSize Character cell Y dimension for text modes
BytesPerScanLine Bytes per horizontal scan line
MaxBytesPerScanLine Maximum bytes per scan line
MaxScanLineWidth Maximum pixels per scan line
MaxScanLines Maximum number of scanlines for default

scanline width
LinearHeapStart Start of linear only heap (if any)
MaxLinearOffset Maximum display memory offset for linear

drawing
BitsPerPixel Bits per pixel
PixelFormat Pixel format for the display mode
MaxBuffers Maximum number of display buffers
MaxPixelClock Maximum pixel clock for mode
DefaultRefreshRate Currently active default refresh rate
RefreshRateList List of all valid refresh rates terminated with -1.
BitmapStartAlign Linear bitmap start alignment in bytes
BitmapStridePad Linear bitmap stride pad in bytes
MonoBitmapStartAlign Linear bitmap start alignment in bytes
MonoBitmapStridePad Linear bitmap stride pad in bytes
BitBltCaps Hardware 2D BitBltFx capabilities
VideoWindows Up to 8 hardware video overlays

SciTech SNAP, Graphics Architecture 508

Graphics Device Driver Reference

HW3DCaps Hardware 3D capabilities
MaxOOZ Maximum ooz coordinate value in floating point
MaxOOW Maximum oow coordinate value in floating point
MaxOOS Maximum one over s coordinate value in floating

point
MaxOOT Maximum one over t coordinate value in floating

point
DepthFormats Depth buffer formats flags
DepthStartAlign Depth buffer start alignment in bytes
DepthStridePad Depth buffer stride pad in bytes
TextureFormats Texture formats flags
TextureStartAlign Texture start alignment in bytes
TextureStridePad Texture stride pad in bytes
TextureMaxX Maximum texture X dimension
TextureMaxY Maximum texture Y dimension
TextureMaxAspect Maximum texture aspect ratio (1:x)
StencilFormats Stencil buffer formats flags
StencilStartAlign Stencil buffer start alignment in bytes
StencilStridePad Stencil buffer stride pad in bytes
LinearSize Linear buffer size in bytes
LinearBasePtr Physical addr of linear buffer
AttributesExt Extended mode attributes flags
PhysicalXResolution Physical horizontal resolution in pixels
PhysicalYResolution Physical vertical resolution in lines

SciTech SNAP, Graphics Architecture 509

Graphics Device Driver Reference

GA_modeProfile

Declaration
typedef struct {
 N_uint32 dwSize;
 struct {
 N_uint8 numModes;
 GA_mode modeList[256];
 } m;
 struct {
 N_uint8 numModes;
 GA_mode modeList[256];
 } vbe;
 } GA_modeProfile

Prototype In
snap/graphics.h

Description
Structure returned by GetModeProfile, which contains configuration information about
the mode profile for the installed device driver. A default mode profile is shipped with
the graphics device drivers, but a new mode profile can be downloaded at any time (to
implement new display modes using the new Dial-A-Mode interface). Note that a mode
must also have the associated CRTC tables before it will work.

Note: The dwSize member is intended for future compatibility, and should be set to the size of
the structure as defined in this header file. Future drivers will be compatible with older
software by examiming this value.

Members
dwSize Set to size of structure in bytes
numModes Count for the number of configured display modes
modeList Array of up to 256 configured display modes
numModes Count for the number of configured display modes
vbeModeList Array of up to 256 modes reported to the VBE driver

SciTech SNAP, Graphics Architecture 510

Graphics Device Driver Reference

GA_monitor

Declaration
typedef struct {
 char mfr[MONITOR_MFR_LEN+1];
 char model[MONITOR_MODEL_LEN+1];
 char PNPID[8];
 uchar maxResolution;
 uchar minHScan;
 uchar maxHScan;
 uchar minVScan;
 uchar maxVScan;
 uchar flags;
 } GA_monitor

Prototype In
snap/monitor.h

Description
Monitor configuration information structure. This structure defines the capabilities of
the attached display monitor, and is used internally in SNAP Graphics to decide what
features the driver should report for the attached monitor.

Members
mfr Monitor manufacturer (key)
model Monitor model name (sub-key)
PNPID Plug and Play ID (optional)
maxResolution Maximum resolution id
minHScan Minimum horizontal scan
maxHScan Maximum horizontal scan
minVScan Minimum vertical scan
maxVScan Maximum vertical scan
flags Capabilities flags

SciTech SNAP, Graphics Architecture 511

Graphics Device Driver Reference

GA_monitorFlagsType

Declaration
typedef enum {
 Monitor_DPMSEnabled = 0x01,
 Monitor_GTFEnabled = 0x02,
 Monitor_FixedFreq = 0x04,
 Monitor_HSyncNeg = 0x08,
 Monitor_VSyncNeg = 0x10,
 Monitor_16to9 = 0x20,
 Monitor_Exclude4to3 = 0x40,
 Monitor_Changed = 0x80
 } GA_monitorFlagsType

Prototype In
snap/monitor.h

Description
This enumeration defines the flags for the capabilities for monitors as defined in the

 record. GA_monitor

Members
Monitor_DPMSEnabled Monitor supports DPMS Power Management
Monitor_GTFEnabled Monitor supports VESA Generalised Timing

Formula
Monitor_FixedFreq Monitor is a fixed frequency monitor
Monitor_HSyncNeg HSync- is required for fixed frequency
Monitor_VSyncNeg VSync- is required for fixed frequency
Monitor_16to9 Monitor supports 16:9 aspect ratio modes
Monitor_Exclude4to3 Driver should execlude all 4:3 aspect modes
Monitor_Changed Monitor record has been changed

SciTech SNAP, Graphics Architecture 512

Graphics Device Driver Reference

GA_monoCursor

Declaration
typedef struct {
 N_uint8 XORMask[512];
 N_uint8 ANDMask[512];
 N_uint32 HotX;
 N_uint32 HotY;
 } GA_monoCursor

Prototype In
snap/graphics.h

Description
Hardware monochrome cursor structure. This structure defines a monochrome
hardware cursor that is downloaded to the hardware. The cursor is defined as a 64x64
image with an AND and XOR mask. The definition of the AND mask, XOR mask and
the pixels that will appear on the screen is as follows (same as the Microsoft Windows
cursor format):

AND XOR Result
0 0 Transparent (color from screen memory)
0 1 Invert (complement of color from screen memory)
1 0 Cursor background color
1 1 Cursor foreground color

The HotX and HotY members define the hot spot for the cursor, which is the location
where the logical mouse pointer is located in the cursor image. When you click the
mouse, the pixel under the hot-spot is the pixel selected.

Members
XORMask Cursor XOR mask
ANDMask Cursor AND mask
HotX Cursor X coordinate hot spot
HotY Cursor Y coordinate hot spot

SciTech SNAP, Graphics Architecture 513

Graphics Device Driver Reference

GA_multiHeadType

Declaration
typedef enum {
 gaActiveHeadClone = -1,
 gaActiveHeadPrimary = 0,
 gaActiveHeadSecondary = 1,
 gaActiveHeadTernary = 2
 } GA_multiHeadType

Prototype In
snap/graphics.h

Description
This enumeration defines the flags stored in the bMultiDisplay field of the GA_opti
structure.

ons

Members
gaActiveHeadClone Active head is cloned across all displays

(default)
gaActiveHeadPrimary Active head is primary display
gaActiveHeadSecondary Active head is secondary display
gaActiveHeadTernary Active head is third display

SciTech SNAP, Graphics Architecture 514

Graphics Device Driver Reference

GA_options

Declaration
typedef struct {
 N_uint32 dwSize;
 N_fix32 memoryClock;
 N_fix32 defaultMemoryClock;
 N_fix32 maxMemoryClock;
 GA_paletteExt gammaRamp[256];
 N_int32 outputDevice;
 GA_TVParams TV640PALUnder;
 GA_TVParams TV640NTSCUnder;
 GA_TVParams TV640PALOver;
 GA_TVParams TV640NTSCOver;
 GA_TVParams TV800PALUnder;
 GA_TVParams TV800NTSCUnder;
 GA_TVParams TV800PALOver;
 GA_TVParams TV800NTSCOver;
 N_uint8 bRes1;
 N_uint8 bRes2;
 N_int32 RTCFrequency;
 N_int32 RTCAdvanceTicks;
 N_uint8 bRes3;
 N_uint16 ioPort;
 N_uint8 ioAndMask;
 N_uint8 ioLeftOrMask;
 N_uint8 ioRightOrMask;
 N_uint8 ioOffOrMask;
 N_uint8 vSyncWidthLeft;
 N_uint8 vSyncWidthRight;
 N_uint8 text80x43Height;
 N_uint8 text80x50Height;
 N_uint8 text80x60Height;
 N_uint8 text100x43Height;
 N_uint8 text100x50Height;
 N_uint8 text100x60Height;
 N_uint8 text132x43Height;
 N_uint8 text132x50Height;
 N_uint8 text132x60Height;
 N_uint8 tripleScanLowRes;
 N_uint8 doubleScan512;
 N_uint8 stereoRefresh;
 N_uint8 stereoRefreshInterlaced;
 N_uint8 stereoMode;
 N_uint8 stereoModeWindowed;
 N_uint8 stereoBlankInterval;
 N_uint8 stereoRefreshWindowed;
 N_uint8 stereoRefreshWindowedInterlaced;
 N_uint32 stereoDevice;
 N_uint16 glassesType;
 N_uint16 stereoBlankIntervalPercent;
 N_fix32 engineClock;
 N_fix32 defaultEngineClock;
 N_fix32 maxEngineClock;
 N_uint8 stereoControlPanelOptions;
 N_uint8 stereoCursorRedraw;
 N_uint8 res0[14];
 N_int16 LCDPanelWidth;
 N_int16 LCDPanelHeight;
 N_uint8 bLCDExpand;
 N_uint8 bPrefer16bpp;

SciTech SNAP, Graphics Architecture 515

Graphics Device Driver Reference

 N_uint8 bPrefer32bpp;
 N_int16 TVMaxWidth;
 N_int16 TVMaxHeight;
 N_uint8 res1[95];
 N_uint32 resolutions[GA_MAX_RESOLUTIONS];
 N_uint8 colorDepths[GA_MAX_COLORDEPTHS];
 N_uint8 maxRefresh;
 N_uint8 accelType;
 N_uint8 res2[159];
 N_uint8 bDebugMode;
 N_uint8 bGenericRefresh;
 N_uint8 bDialAMode;
 N_uint8 bVirtualScroll;
 N_uint8 bDoubleBuffer;
 N_uint8 bTripleBuffer;
 N_uint8 bHardwareStereoSync;
 N_uint8 bStereo;
 N_uint8 bMultiDisplay;
 N_uint8 bPortrait;
 N_uint8 bFlipped;
 N_uint8 bInvertColors;
 N_uint8 bReserved1;
 N_uint8 bReserved2;
 N_uint8 bVirtualDisplay;
 N_uint8 bAGPFastWrite;
 N_uint8 bZoom;
 N_uint8 bMultiHead;
 N_uint8 res3[154];
 N_uint8 bTVOut;
 N_uint8 bTVTuner;
 N_uint8 bDualHead;
 N_uint8 bDPMS;
 N_uint8 bDDC;
 N_uint8 bDDCCI;
 N_uint8 bGammaCorrect;
 N_uint8 bHardwareCursor;
 N_uint8 bHardwareColorCursor;
 N_uint8 bHardwareVideo;
 N_uint8 bHardwareAccel2D;
 N_uint8 bHardwareAccel3D;
 N_uint8 bMonoPattern;
 N_uint8 bTransMonoPattern;
 N_uint8 bColorPattern;
 N_uint8 bTransColorPattern;
 N_uint8 bSysMem;
 N_uint8 bLinear;
 N_uint8 bBusMaster;
 N_uint8 bDrawScanList;
 N_uint8 bDrawEllipseList;
 N_uint8 bDrawFatEllipseList;
 N_uint8 bDrawRect;
 N_uint8 bDrawRectLin;
 N_uint8 bDrawTrap;
 N_uint8 bDrawLine;
 N_uint8 bDrawStippleLine;
 N_uint8 bPutMonoImage;
 N_uint8 bClipMonoImage;
 N_uint8 bBitBlt;
 N_uint8 bBitBltPatt;
 N_uint8 bBitBltColorPatt;
 N_uint8 bSrcTransBlt;
 N_uint8 bDstTransBlt;
 N_uint8 bStretchBlt;

SciTech SNAP, Graphics Architecture 516

Graphics Device Driver Reference

 N_uint8 bConvertBlt;
 N_uint8 bStretchConvertBlt;
 N_uint8 bBitBltFx;
 N_uint8 bGetBitmap;
 N_uint8 res4[256];
 GA_layout multiHeadSize;
 GA_layout multiHeadRes[GA_MAX_HEADS];
 GA_layout multiHeadBounds[GA_MAX_HEADS];
 } GA_options

Prototype In
snap/graphics.h

Description
Structure returned by GetOptions, which contains configuration information about the
options for the installed device driver. All the boolean configuration options are enabled
by default and can be optionally turned off by the user via the configuration functions.

This structure also contains the configuration information for the software stereo page
flipping support in SNAP Graphics.

If you select the gaGlassesIOPort type, then you need to fill in the ioPort, ioAndMask,
ioLeftOrMask, ioRightOrMask and ioOffOrMask fields. These fields define the values
used to toggle the specified I/O port when the glasses need to be flipped. First the
existing value is read from the specified I/O port, the AND mask in applied and then
the appropriate OR mask is applied depending on the state of the glasses. This value is
then written back to the desired I/O port.

If you select the gaGlassesGenericVSync type, then you need to fill in the
VSyncWidthLeft and VSyncWidthRight fields, which define the vertical sync width to
program when the desired eye should be active.

The values in the RTCFrequency and RTCAdvanceTicks define the frequency of the
stereo timer interrupt, which can be used to fine tune the overheads taken by the stereo
page flip handler for maximum performance before stuttering begins (ie: lost frames).
The RTCFrequency field can be any power of 2 frequency between 1024Hz and 8192H,
and the RTCAdvanceTicks should be a value larger than 1. For most systems an
RTCFrequency value of 2048 and an RTCAdvanceTicks of 2 will work well. SNAP
Graphics will however choose good defaults for the target OS if these values are not
overridden.

Note: The dwSize member is intended for future compatibility, and should be set to the size of
the structure as defined in this header file. Future drivers will be compatible with older
software by examiming this value.

Members
dwSize Set to size of structure in bytes
memoryClock Currently configured memory clock
defaultMemoryClock Current hardware default memory clock
maxMemoryClock Maximum allowable memory clock

SciTech SNAP, Graphics Architecture 517

Graphics Device Driver Reference

gammaRamp Default gamma ramp for RGB display modes
outputDevice Currently configured output device
TV640PALUnder TV parameters for 640x480 PAL underscan

modes
TV640NTSCUnder TV parameters for 640x480 NTSC underscan

modes
TV640PALOver TV parameters for 640x480 PAL overscan

modes
TV640NTSCOver TV parameters for 640x480 NTSC overscan

modes
TV800PALUnder TV parameters for 800x600 PAL underscan

modes
TV800NTSCUnder TV parameters for 800x600 NTSC underscan

modes
TV800PALOver TV parameters for 800x600 PAL overscan

modes
TV800NTSCOver TV parameters for 800x600 NTSC overscan

modes
numHorzDisplay Number of horizontal displays
numVertDisplay Number of vertical displays
RTCFrequency Frequency for real time clock for software

stereo
RTCAdvanceTicks Number of ticks to advance for software stereo
glassesType Type of stereo glasses defined by

GA_glassesTypeFlags
ioPort Generic I/O port for controlling glasses
ioAndMask I/O port AND mask
ioLeftOrMask I/O port OR mask when left eye is active
ioRightOrMask I/O port OR mask when right eye is active
ioOffOrMask I/O port OR mask when glasses are off
vSyncWidthLeft Vertical sync width when left eye is active
vSyncWidthRight Vertical sync width when right eye is active
text80x43Height Character height for 80x43 text mode (8,14 or

16)
text80x50Height Character height for 80x50 text mode (8,14 or

16)
text80x60Height Character height for 80x60 text mode (8,14 or

16)
text100x43Height Character height for 100x43 text mode (8,14 or

16)
text100x50Height Character height for 100x50 text mode (8,14 or

16)
text100x60Height Character height for 100x60 text mode (8,14 or

16)
text132x43Height Character height for 132x43 text mode (8,14 or

16)
text132x50Height Character height for 132x50 text mode (8,14 or

SciTech SNAP, Graphics Architecture 518

Graphics Device Driver Reference

16)
text132x60Height Character height for 132x60 text mode (8,14 or

16)
tripleScanLowRes True to triple scan low res modes
doubleScan512 True to double scan 512x384 modes
stereoRefresh Value to use for stereo mode refresh rate
stereoRefreshInterlaced Value to use for stereo mode interlaced refresh

rate
stereoMode Stereo mode to be used for fullscreen

applications
stereoModeWindowed Stereo mode to be used for windowed

applications
stereoBlankInterval Stereo mode blank interval for above below

format
stereoDevice Stereo device ID defined by stereo control

panel
engineClock Currently configured graphics engine clock
defaultEngineClock Current hardware default graphics engine

clock
maxEngineClock Maximum allowable graphics engine clock
LCDPanelWidth Width of attached LCD panel in pixels
LCDPanelHeight Height of attached LCD panel in lines
bLCDExpand Enable expansion of modes to fill LCD panel
bDebugMode Enable debug log filter driver (0 is off)
bGenericRefresh Enable generic refresh rate control
bDialAMode Enable Dial-A-Mode generic mode interface
bVirtualScroll Enable virtual scrolling functions
bDoubleBuffer Enable double buffering functions
bTripleBuffer Enable triple buffering functions
bHardwareStereoSync Enable hardware stereo sync flag
bStereo Enable stereo display mode support
bMultiDisplay Enable multiple display mode support
bPortrait Enable portrait display mode
bFlipped Enable flipped display mode
bInvertColors Enable invert color mode
bVirtualDisplay Enable virtual display mode
bAGPFastWrite Enable AGP fast write (only here to be

licensed)
bZoom Enable zoom support
bMultiHead Enable multi-head support
bTVOut Enable TV Output support
bTVTuner Enable TV Tuner support
bDualHead Enable Dual Head CRTC support
bDPMS Enable DPMS Display Power Management

support
bDDC Enable DDC Display Data Channel functions
bDDCCI Enable DDC/CI Control Interface functions

SciTech SNAP, Graphics Architecture 519

Graphics Device Driver Reference

bGammaCorrect Enable gamma correction
bHardwareCursor Enable hardware cursor
bHardwareVideo Enable hardware video
bHardwareAccel2D Enable hardware 2D acceleration
bHardwareAccel3D Enable hardware 2D acceleration
bMonoPattern Enable 8x8 mono pattern fills
bTransMonoPattern Enable 8x8 mono transparent pattern fills
bColorPattern Enable 8x8 color pattern fills
bTransColorPattern Enable 8x8 color transparent pattern fills
bSysMem Enable system memory blits
bLinear Enable linear offscreen memory blits
bBusMaster Enable bus mastering functions
bDrawScanList Enable DrawScanList family of functions
bDrawEllipseList Enable DrawEllipseList family of functions
bDrawFatEllipseList Enable DrawFatEllipseList family of functions
bDrawRect Enable DrawRect family of functions
bDrawRectLin Enable DrawRectLin family of functions
bDrawTrap Enable DrawTrap family of functions
bDrawLine Enable DrawLine function
bDrawStippleLine Enable DrawStippleLine function
bPutMonoImage Enable PutMonoImage family of functions
bClipMonoImage Enable ClipMonoImage family of functions
bBitBlt Enable BitBlt family of functions
bBitBltPatt Enable BitBltPatt family of functions
bBitBltColorPatt Enable BitBltColorPatt family of functions
bSrcTransBlt Enable SrcTransBlt family of functions
bDstTransBlt Enable DstTransBlt family of functions
bStretchBlt Enable StretchBlt family of functions
bConvertBlt Enable ConvertBlt family of functions
bStretchConvertBlt Enable StretchConvertBlt family of functions
bBitBltFx Enable BitBltFx family of functions
bGetBitmap Enable GetBitmap family of functions
multiHeadSize Virtual size for multi-head displays
multiHeadRes Physical resolutions for multi-head displays
multiHeadBounds Virtual layout for multi-head displays

SciTech SNAP, Graphics Architecture 520

Graphics Device Driver Reference

GA_palette

Declaration
typedef struct {
 N_uint8 Blue;
 N_uint8 Green;
 N_uint8 Red;
 N_uint8 Alpha;
 } GA_palette

Prototype In
snap/graphics.h

Description
Palette entry structure, which defines a single entry in the hardware color lookup table
or gamma correction table.

Members
blue Blue component of palette entry, range [0-255]
green Green component of palette entry, range [0-255]
red Blue component of palette entry, range [0-255]
alpha Alpha or alignment byte

SciTech SNAP, Graphics Architecture 521

Graphics Device Driver Reference

GA_paletteExt

Declaration
typedef struct {
 N_uint16 Blue;
 N_uint16 Green;
 N_uint16 Red;
 } GA_paletteExt

Prototype In
snap/graphics.h

Description
Extended palette entry structure, which defines a single entry in the hardware color
lookup table or gamma correction table.

Members
blue Blue component of palette entry, range [0-65535]
green Green component of palette entry, range [0-65535]
red Blue component of palette entry, range [0-65535]

SciTech SNAP, Graphics Architecture 522

Graphics Device Driver Reference

GA_pattern

Declaration
typedef struct {
 N_uint8 p[8];
 } GA_pattern

Prototype In
snap/graphics.h

Description
Fundamental type definition for an array element of an 8x8 monochrome pattern. Each
line in the pattern is represented as a single byte, with 8 bytes in total for the entire
pattern.

Members
p 8 bytes of pattern data

SciTech SNAP, Graphics Architecture 523

Graphics Device Driver Reference

GA_pixelFormat

Declaration
typedef struct {
 N_uint8 RedMask;
 N_uint8 RedPosition;
 N_uint8 RedAdjust;
 N_uint8 GreenMask;
 N_uint8 GreenPosition;
 N_uint8 GreenAdjust;
 N_uint8 BlueMask;
 N_uint8 BluePosition;
 N_uint8 BlueAdjust;
 N_uint8 AlphaMask;
 N_uint8 AlphaPosition;
 N_uint8 AlphaAdjust;
 } GA_pixelFormat

Prototype In
snap/graphics.h

Description
Structure representing the format of an RGB pixel. This structure is used to describe the
RGB pixel format for SNAP graphics modes, as well as the pixel format for system
memory buffers converted on the fly by SNAP Graphics to the destination pixel format.
RGB pixel formats are required for pixel depths greater than or equal to 15-bits per pixel.
The pixel formats for 15 and 16-bit modes are constant and never change, however there
are 2 possible pixel formats for 24 bit RGB modes and 4 possible formats for 32 bit RGB
modes that are supported by the MGL. The possible modes for 24-bits per pixel are:

24-bit Description
RGB Values are packed with Red in byte 2, Green in byte 1 and Blue

in byte 0. This is the standard format used by all 24 bit Windows
BMP files, and the native display format for most graphics
hardware on the PC.

BGR Values are packed with Blue in byte 2, Green in byte 1 and Red
in byte 0. This format is the native display format for some
graphics hardware on the PC.

The possible modes for 32-bits per pixel are:

32-bit Description
ARGB Values are packed with Red in byte 2, Green in byte 1 and Blue

in byte 0 and alpha in byte 3.
ABGR Values are packed with Blue in byte 2, Green in byte 1 and Red

in byte 0 and alpha in byte 3.
RGBA Values are packed with Red in byte 3, Green in byte 2 and Blue

in byte 1 and alpha in byte 0.
BGRA Values are packed with Blue in byte 3, Green in byte 2 and Red

in byte 1 and alpha in byte 0.
If you intend to write your own direct rendering code for RGB graphics modes, you will
need to write your code so that it will adapt to the underlying pixel format used by the

SciTech SNAP, Graphics Architecture 524

Graphics Device Driver Reference

hardware to display the correct colors on the screen. SNAP Graphics has the ability to
perform pixel format translation on the fly using the ConvertBlt family of functions, but
this can be time consuming so directly rendering in the native pixel format can be more
efficient. The formula for packing the pixel data into the proper positions given three 8-
bit RGB values is as follows:

color = ((GA_color)((R >> RedAdjust) & RedMask)
 << RedPosition)
 | ((GA_color)((G >> GreenAdjust) & GreenMask)
 << GreenPosition)
 | ((GA_color)((B >> BlueAdjust) & BlueMask)
 << BluePosition);

Alternatively you can unpack the color values from the framebuffer with the following
code (note that you lose precision when unpacking values from the framebuffer since
the bottom bits always get set to 0):

R = (((color) >> RedPosition) & RedMask)
 << RedAdjust;
G = (((color) >> GreenPosition) & GreenMask)
 << GreenAdjust;
B = (((color) >> BluePosition) & BlueMask)
 << BlueAdjust;

If you wish to create your own pixel formats (such as to create memory custom
bitmaps), the following list defines all the pixel formats that the SNAP Graphics knows
how to deal with:

{0x1F,0x0A,3, 0x1F,0x05,3, 0x1F,0x00,3, 0x01,0x0F,7}, // 555 15bpp
{0x1F,0x0B,3, 0x3F,0x05,2, 0x1F,0x00,3, 0x00,0x00,0}, // 565 16bpp
{0xFF,0x10,0, 0xFF,0x08,0, 0xFF,0x00,0, 0x00,0x00,0}, // RGB 24bpp
{0xFF,0x00,0, 0xFF,0x08,0, 0xFF,0x10,0, 0x00,0x00,0}, // BGR 24bpp
{0xFF,0x10,0, 0xFF,0x08,0, 0xFF,0x00,0, 0xFF,0x18,0}, // ARGB 32bpp
{0xFF,0x00,0, 0xFF,0x08,0, 0xFF,0x10,0, 0xFF,0x18,0}, // ABGR 32bpp
{0xFF,0x18,0, 0xFF,0x10,0, 0xFF,0x08,0, 0xFF,0x00,0}, // RGBA 32bpp
{0xFF,0x08,0, 0xFF,0x10,0, 0xFF,0x18,0, 0xFF,0x00,0}, // BGRA 32bpp

One special cased pixel format is used to represent and 8bpp color index bitmap with an
alpha channel. This pixel format is a 16-bit wide pixel format, but the red channel is
considered to contain the 8-bit color index values. The pixel format structure for this
type of bitmap looks like the following:

{0xFF,0x00,0, 0x00,0x00,0, 0x00,0x00,0, 0xFF,0x08,0}, // A8CI 8bpp + Alpha

Members
RedMask Unshifted 8-bit mask for the red color channel
RedPosition Bit position for bit 0 of the red color channel information
RedAdjust Number of bits to shift the 8-bit red value right
GreenMask Unshifted 8-bit mask for the green color channel
GreenPosition Bit position for bit 0 of the green color channel

information
GreenAdjust Number of bits to shift the 8-bit green value right
BlueMask Unshifted 8-bit mask for the blue color channel

SciTech SNAP, Graphics Architecture 525

Graphics Device Driver Reference

BluePosition Bit position for bit 0 of the blue color channel
information

BlueAdjust Number of bits to shift the 8-bit blue value right
AlphaMask Unshifted 8-bit mask for the alpha channel
AlphaPosition Bit position for bit 0 of the alpha channel information
AlphaAdjust Number of bits to shift the 8-bit alpha value right

SciTech SNAP, Graphics Architecture 526

Graphics Device Driver Reference

GA_recMode

Declaration
typedef struct {
 N_uint16 XResolution;
 N_uint16 YResolution;
 N_uint8 BitsPerPixel;
 N_int8 RefreshRate;
 } GA_recMode

Prototype In
snap/graphics.h

Description
Structure used to store the recommended modes for SNAP Graphics.

Members
XResolution X resolution for the recommended mode
YResolution Y resolution for the recommended mode
BitsPerPixel BitsPerPixel for the recommended mode
RefreshRate RefreshRate for the recommended mode (up to 127Hz)

SciTech SNAP, Graphics Architecture 527

Graphics Device Driver Reference

GA_rect

Declaration
typedef struct {
 N_int32 left;
 N_int32 top;
 N_int32 right;
 N_int32 bottom;
 } GA_rect

Prototype In
snap/graphics.h

Description
Fundamental type definition for an integer rectangle. Note that SNAP Graphics defines
and uses rectangles such that the bottom and right coordinates are not actually included
in the pixels that define a raster coordinate rectangle. This allows for correct handling of
overlapping rectangles without drawing any pixels twice.

Members
left Left coordinate of the rectangle
top Top coordinate of the rectangle
right Right coordinate of the rectangle
bottom Bottom coordinate of the rectangle

SciTech SNAP, Graphics Architecture 528

Graphics Device Driver Reference

GA_region

Declaration
typedef struct {
 GA_rect rect;
 GA_span *spans;
 } GA_region

Prototype In
snap/graphics.h

Description
Fundamental type definition representing a complex region. Complex regions are used
to represent non-rectangular areas as unions of smaller rectangles (the smallest being a
single pixel). You can use complex regions to build complex clipping regions for user
interface library development.

If the Spans field for the region is NULL, then the region is a simple region and is
composed of only a single rectangle. Note however that you can have a simple region
that consists of only single rectangle in the span structure (usually after complex region
arithmetic). You can use the GA_IsSimpleRegion macro to determine if the region
contains only a single rectangle.

Members
Rect Bounding rectangle for the region
spans Pointer to the internal region span structure.

SciTech SNAP, Graphics Architecture 529

Graphics Device Driver Reference

GA_regionFuncs

Prototype In
snap/graphics.h

Description
Function group containing all region management functions available via the SNAP
API's. These functions may be used externally for complex region management, but they
are also used extensively by SNAP Graphics for offscreen buffer management.

Note also that this function group is only returned by the 2D reference rasteriser library,
and not by hardware drivers.

Note: Be sure to fill in the dwSize member of this structure when you call GA_queryFunctions
to the correct size of the structure at compile time!

SciTech SNAP, Graphics Architecture 530

Graphics Device Driver Reference

ClearRegion

Clears the specified region to an empty region.

Declaration
void NAPI GA_regionFuncs::ClearRegion(
 GA_region *r)

Prototype In
snap/graphics.h

Parameters
r region to be cleared

Description
This function clears the specified region to an empty region, freeing up all the memory
used to store the region data.

See Also
NewRegion egion, CopyRegion, FreeR

SciTech SNAP, Graphics Architecture 531

Graphics Device Driver Reference

CopyIntoRegion

Copy the contents of one region into another region.

Declaration
void NAPI GA_regionFuncs::CopyIntoRegion(
 GA_region *d,
 const GA_region *s)

Prototype In
snap/graphics.h

Parameters
d Pointer to destination region
s Pointer to source region

Description
Copies the definition for an entire region into the destination region, clearing any region
information already present in the destination. This function is similar to CopyRegion,
however it does not allocate a new region but rather copies the data into an existing
region.

See Also
NewRegion egion Region, FreeR , Clear , CopyRegion

SciTech SNAP, Graphics Architecture 532

Graphics Device Driver Reference

CopyRegion

Create a copy of the specified region.

Declaration
GA_region * NAPI GA_regionFuncs::CopyRegion(
 const GA_region *s)

Prototype In
snap/graphics.h

Parameters
s Pointer to source region

Return Value
Pointer to the copied region, or NULL if out of memory.

Description
Copies the definition for an entire region and returns a pointer to the newly created
region. The space for the copied region is allocated from the region memory pool, which
SNAP uses to maintain a local memory allocation scheme for regions to increase
performance.

If there is not enough memory to copy the region, this routine will return NULL.

See Also
NewRegion egion Region ion, FreeR , Clear , CopyIntoReg

SciTech SNAP, Graphics Architecture 533

Graphics Device Driver Reference

DiffRegion

Compute the Boolean difference of two regions.

Declaration
ibool NAPI GA_regionFuncs::DiffRegion(
 GA_region *r1,
 const GA_region *r2)

Prototype In
snap/graphics.h

Parameters
r1 Region from which r2 is subtracted, which also becomes the result

region.
r2 Region to be subtracted from r1

Return Value
True if the difference is valid, false if an empty region was created.

Description
Computes the Boolean difference of two regions by subtracting the area covered by
region r2 from region r1, computing the resulting region in r1, which may result in an
empty region. If you need to retain the value of r1, you need to first copy r1 to a
temporary region.

See Also
DiffRegionRect, UnionRegion, SectRegion

SciTech SNAP, Graphics Architecture 534

Graphics Device Driver Reference

DiffRegionRect

Compute the Boolean difference of a region and a rectangle.

Declaration
ibool NAPI GA_regionFuncs::DiffRegionRect(
 GA_region *r1,
 const GA_rect *r2)

Prototype In
snap/graphics.h

Parameters
r1 Region from which r2 is subtracted, which also becomes the result

region.
r2 Rectangle to be subtracted from r1

Return Value
True if the difference is valid, false if an empty region was created.

Description
Computes the Boolean difference of a region and a simple rectangle by subtracting the
area covered by rectangle r2 from region r1, computing the resulting region in r1, which
may result in an empty region. If you need to retain the value of r1, you need to first
copy r1 to a temporary region.

This routine will produce a simple region with only a single bounding rectangle if the
original region was also a simple rectangle and the resulting region is also a single
rectangle, which makes it more efficient if the region to be subtracted is a rectangle.

See Also
DiffRegion, UnionRegion, SectRegion

SciTech SNAP, Graphics Architecture 535

Graphics Device Driver Reference

FreeRegion

Frees all the memory allocated by the complex region.

Declaration
void NAPI GA_regionFuncs::FreeRegion(
 GA_region *r)

Prototype In
snap/graphics.h

Parameters
r Pointer to the region to free

Description
Frees all the memory allocated by the complex region. When you are finished with a
complex region you must free it to free up the memory used to represent the union of
rectangles.

See Also
NewRegion, CopyRegion

SciTech SNAP, Graphics Architecture 536

Graphics Device Driver Reference

IsEmptyRegion

Determines if a region is empty.

Declaration
ibool NAPI GA_regionFuncs::IsEmptyRegion(
 const GA_region *r)

Prototype In
snap/graphics.h

Parameters
r region to test

Return Value
True if region is empty, false if not.

Description
Determines if a region is empty or not. A region is defined as being empty if the
bounding rectangle's right coordinate is less than or equal to the left coordinate, or if the
bottom coordinate is less than or equal to the top coordinate.

See Also
IsEqualRegion on n, UnionRegi , DiffRegion, SectRegion, OffsetRegio , PtInRegion

SciTech SNAP, Graphics Architecture 537

Graphics Device Driver Reference

IsEqualRegion

Determines if two regions are equal.

Declaration
ibool NAPI GA_regionFuncs::IsEqualRegion(
 const GA_region *r1,
 const GA_region *r2)

Prototype In
snap/graphics.h

Parameters
r1 First region to compare
r2 Second region to compare

Return Value
True if the regions are equal, false if not.

Description
Determines if two regions are equal, by comparing the bounding rectangles and the
definitions for both of the regions.

See Also
IsEmptyRegion egion, UnionRegion, DiffRegion, SectRegion, OffsetR , PtInRegion

SciTech SNAP, Graphics Architecture 538

Graphics Device Driver Reference

NewRectRegion

Allocate a new complex region and initialises it to a specific rectangle.

Declaration
GA_region * NAPI GA_regionFuncs::NewRectRegion(
 N_int32 left,
 N_int32 top,
 N_int32 right,
 N_int32 bottom)

Prototype In
snap/graphics.h

Parameters
left Left coordinate of the rectangle
top Top coordinate of the rectangle
right Right coordinate of the rectangle
bottom Bottom coordinate of the rectangle

Return Value
New region generated, NULL if out of memory.

Description
Allocates a new complex region, and initialises it to the passed in rectangle coordinates
when first created.

See Also
NewRegion egion, FreeR , UnionRegion, DiffRegion, SectRegion

SciTech SNAP, Graphics Architecture 539

Graphics Device Driver Reference

NewRegion

Allocate a new complex region.

Declaration
GA_region * NAPI GA_regionFuncs::NewRegion(void)

Prototype In
snap/graphics.h

Return Value
Pointer to the new region, NULL if out of memory.

Description
Allocates a new complex region. The new region is empty when first created. Note that
SNAP maintains a local memory pool for all region allocations in order to provide the
maximum speed and minimum memory overheads for region allocations.

See Also
NewRectRegion egion on, FreeR , UnionRegi , DiffRegion, SectRegion

SciTech SNAP, Graphics Architecture 540

Graphics Device Driver Reference

OffsetRegion

Offsets a region by the specified amount.

Declaration
void NAPI GA_regionFuncs::OffsetRegion(
 GA_region *r,
 N_int32 dx,
 N_int32 dy)

Prototype In
snap/graphics.h

Parameters
r Region to offset
dx Amount to offset x coordinates by
dy Amount to offset y coordinates by

Description
This function offsets the specified region by the dx and dy coordinates, by modifying all
the coordinate locations for every rectangle in the union of rectangles that constitutes the
region by the specified coordinates.

See Also
UnionRegion, DiffRegion, SectRegion

SciTech SNAP, Graphics Architecture 541

Graphics Device Driver Reference

OptimizeRegion

Optimizes the union of rectangles in the region to the minimum number of rectangles.

Declaration
void NAPI GA_regionFuncs::OptimizeRegion(
 GA_region *r)

Prototype In
snap/graphics.h

Parameters
r Region to optimize

Description
This function optimizes the specified region by traversing the region structure looking
for identical spans in the region. The region algebra functions (UnionRegion, DiffRegion,
SectRegion etc.) do not fully optimize the resulting region to save time, so after you have
created a complex region you may wish to call this routine to optimize it.

Optimizing the region will find the minimum number of rectangles required to
represent that region, and will result in faster drawing and traversing of the resulting
region.

See Also
UnionRegion, DiffRegion, SectRegion

SciTech SNAP, Graphics Architecture 542

Graphics Device Driver Reference

PtInRegion

Determines if a point is contained in a specified region.

Declaration
ibool NAPI GA_regionFuncs::PtInRegion(
 const GA_region *r,
 N_int32 x,
 N_int32 y)

Prototype In
snap/graphics.h

Parameters
r Region to test
x x coordinate to test for inclusion
y y coordinate to test for inclusion

Return Value
True if the point is contained in the region, false if not.

Description
This function determines if a specified point is contained within a particular region.
Note that if the region has a hole it in, and the point lies within the hole, then the point is
classified as not being included in the region.

SciTech SNAP, Graphics Architecture 543

Graphics Device Driver Reference

SectRegion

Compute the Boolean intersection between two regions.

Declaration
GA_region * NAPI GA_regionFuncs::SectRegion(
 const GA_region *r1,
 const GA_region *r2)

Prototype In
snap/graphics.h

Parameters
r1 First region to compute intersection with
r2 Second region to compute intersection with

Return Value
Resulting intersection region, or NULL if out of memory.

Description
Computes the Boolean intersection of two regions, returning the result in a new region.
The region may actually be an empty region, in which case the bounding rectangle for
the region will be an empty rectangle.

See Also
DiffRegion, UnionRegion, SectRegionRect

SciTech SNAP, Graphics Architecture 544

Graphics Device Driver Reference

SectRegionRect

Compute the Boolean intersection between a region and a rectangle.

Declaration
GA_region * NAPI GA_regionFuncs::SectRegionRect(
 const GA_region *r1,
 const GA_rect *r2)

Prototype In
snap/graphics.h

Parameters
r1 Region to compute intersection with
r2 Rectangle to compute intersection with

Return Value
Resulting intersection region, or NULL if out of memory.

Description
Computes the Boolean intersection of a region and a rectangle, returning the result in a
new region. The region may actually be an empty region, in which case the bounding
rectangle for the region will be an empty rectangle. Note that this routine will compute
the intersection faster than calling SectRegion with a simple region as the second region
to intersect.

See Also
SectRegion, DiffRegion, UnionRegion

SciTech SNAP, Graphics Architecture 545

Graphics Device Driver Reference

TraverseRegion

Traverses a region for all rectangles in definition.

Declaration
void NAPI GA_regionFuncs::TraverseRegion(
 GA_region *rgn,
 GA_regionCallback doRect,
 void *parms)
typedef void (NAPIP GA_regionCallback)(const GA_rect *r,void *parms)

Prototype In
snap/graphics.h

Parameters
rgn Region to traverse
doRect Callback function to call for every rectangle processed
parms Parameters to pass to callback function

Description
This function traverses the definition of the region, calling the supplied callback function
once for every rectangle in union of rectangles that make up the complex region.

See Also
DiffRegion, UnionRegion, SectRegion

SciTech SNAP, Graphics Architecture 546

Graphics Device Driver Reference

UnionRegion

Computes the Boolean union of two regions.

Declaration
ibool NAPI GA_regionFuncs::UnionRegion(
 GA_region *r1,
 const GA_region *r2)

Prototype In
snap/graphics.h

Parameters
r1 Region with which r2 is unioned, and also becomes the result

region.
r2 Region to be unioned with r1

Return Value
True if the union is valid, false if an empty region was created.

Description
Computes the Boolean union of two regions for the area covered by region r1 and region
r2, computing the resulting region in r1, which may result in an empty region. If you
need to retain the value of r1, you need to first copy r1 to a temporary region.

See Also
DiffRegion ctRegion ionRect, Se , UnionRegionOfs, UnionReg

SciTech SNAP, Graphics Architecture 547

Graphics Device Driver Reference

UnionRegionOfs

Computes the Boolean union of two regions and offsets the result.

Declaration
ibool NAPI GA_regionFuncs::UnionRegionOfs(
 GA_region *r1,
 const GA_region *r2,
 N_int32 dx,
 N_int32 dy)

Prototype In
snap/graphics.h

Parameters
r1 Region with which r2 is unioned, and also becomes the result

region.
r2 Region to be unioned with r1
dx Offset to add to all x coordinates in region 2
dy Offset to add to all y coordinates in region 2

Return Value
True if the union is valid, false if an empty region was created.

Description
Computes the Boolean union of two regions for the area covered by region r1 and region
r2, computing the resulting region in r1, which may result in an empty region. This
routine also adds the specified (x,y) offset value to all the coordinates in region 2 before
they are unioned with region 1, which allows you to quickly do a union with a
translated region without needing to explicitly translate the region itself. If you need to
retain the value of r1, you need to first copy r1 to a temporary region.

See Also
DiffRegion ctRegion Rect, Se , UnionRegion, UnionRegion

SciTech SNAP, Graphics Architecture 548

Graphics Device Driver Reference

UnionRegionRect

Computes the Boolean union of a region and a rectangle.

Declaration
ibool NAPI GA_regionFuncs::UnionRegionRect(
 GA_region *r1,
 const GA_rect *r2)

Prototype In
snap/graphics.h

Parameters
r1 Region with which r2 is unioned, and also becomes the result

region.
r2 Rectangle to be unioned with r1

Return Value
True if the union is valid, false if an empty region was created.

Description
Computes the Boolean union of a region r1 and rectangle r2, computing the resulting
region in r1, which may result in an empty region. If you need to retain the value of r1,
you need to first copy r1 to a temporary region.

This routine is faster than using UnionRegion if the region to be unioned is a simple
rectangle rather than a complex region.

See Also
DiffRegion ctRegion Ofs, Se , UnionRegion, UnionRegion

SciTech SNAP, Graphics Architecture 549

Graphics Device Driver Reference

GA_rop3CodesType

Declaration
typedef enum {
 GA_R3_0,
 GA_R3_DPSoon,
 GA_R3_DPSona,
 GA_R3_PSon,
 GA_R3_SDPona,
 GA_R3_DPon,
 GA_R3_PDSxnon,
 GA_R3_PDSaon,
 GA_R3_SDPnaa,
 GA_R3_PDSxon,
 GA_R3_DPna,
 GA_R3_PSDnaon,
 GA_R3_SPna,
 GA_R3_PDSnaon,
 GA_R3_PDSonon,
 GA_R3_Pn,
 GA_R3_PDSona,
 GA_R3_DSon,
 GA_R3_SDPxnon,
 GA_R3_SDPaon,
 GA_R3_DPSxnon,
 GA_R3_DPSaon,
 GA_R3_PSDPSanaxx,
 GA_R3_SSPxDSxaxn,
 GA_R3_SPxPDxa,
 GA_R3_SDPSanaxn,
 GA_R3_PDSPaox,
 GA_R3_SDPSxaxn,
 GA_R3_PSDPaox,
 GA_R3_DSPDxaxn,
 GA_R3_PDSox,
 GA_R3_PDSoan,
 GA_R3_DPSnaa,
 GA_R3_SDPxon,
 GA_R3_DSna,
 GA_R3_SPDnaon,
 GA_R3_SPxDSxa,
 GA_R3_PDSPanaxn,
 GA_R3_SDPSaox,
 GA_R3_SDPSxnox,
 GA_R3_DPSxa,
 GA_R3_PSDPSaox,
 GA_R3_DPSana,
 GA_R3_SSPxPDxaxn,
 GA_R3_SPDSoax,
 GA_R3_PSDnox,
 GA_R3_PSDPxox,
 GA_R3_PSDnoan,
 GA_R3_PSna,
 GA_R3_SDPnaon,
 GA_R3_SDPSoox,
 GA_R3_Sn,
 GA_R3_SPDSaox,
 GA_R3_SPDSxnox,
 GA_R3_SDPox,
 GA_R3_SDPoan,
 GA_R3_PSDPoax,

SciTech SNAP, Graphics Architecture 550

Graphics Device Driver Reference

 GA_R3_SPDnox,
 GA_R3_SPDSxox,
 GA_R3_SPDnoan,
 GA_R3_PSx,
 GA_R3_SPDSonox,
 GA_R3_SPDSnaox,
 GA_R3_PSan,
 GA_R3_PSDnaa,
 GA_R3_DPSxon,
 GA_R3_SDxPDxa,
 GA_R3_SPDSanaxn,
 GA_R3_SDna,
 GA_R3_DPSnaon,
 GA_R3_DSPDaox,
 GA_R3_PSDPxaxn,
 GA_R3_SDPxa,
 GA_R3_PDSPDaoxxn,
 GA_R3_DPSDoax,
 GA_R3_PDSnox,
 GA_R3_SDPana,
 GA_R3_SSPxDSxoxn,
 GA_R3_PDSPxox,
 GA_R3_PDSnoan,
 GA_R3_PDna,
 GA_R3_DSPnaon,
 GA_R3_DPSDaox,
 GA_R3_SPDSxaxn,
 GA_R3_DPSonon,
 GA_R3_Dn,
 GA_R3_DPSox,
 GA_R3_DPSoan,
 GA_R3_PDSPoax,
 GA_R3_DPSnox,
 GA_R3_DPx,
 GA_R3_DPSDonox,
 GA_R3_DPSDxox,
 GA_R3_DPSnoan,
 GA_R3_DPSDnaox,
 GA_R3_DPan,
 GA_R3_PDSxa,
 GA_R3_DSPDSaoxxn,
 GA_R3_DSPDoax,
 GA_R3_SDPnox,
 GA_R3_SDPSoax,
 GA_R3_DSPnox,
 GA_R3_DSx,
 GA_R3_SDPSonox,
 GA_R3_DSPDSonoxxn,
 GA_R3_PDSxxn,
 GA_R3_DPSax,
 GA_R3_PSDPSoaxxn,
 GA_R3_SDPax,
 GA_R3_PDSPDoaxxn,
 GA_R3_SDPSnoax,
 GA_R3_PDSxnan,
 GA_R3_PDSana,
 GA_R3_SSDxPDxaxn,
 GA_R3_SDPSxox,
 GA_R3_SDPnoan,
 GA_R3_DSPDxox,
 GA_R3_DSPnoan,
 GA_R3_SDPSnaox,
 GA_R3_DSan,

SciTech SNAP, Graphics Architecture 551

Graphics Device Driver Reference

 GA_R3_PDSax,
 GA_R3_DSPDSoaxxn,
 GA_R3_DPSDnoax,
 GA_R3_SDPxnan,
 GA_R3_SPDSnoax,
 GA_R3_DPSxnan,
 GA_R3_SPxDSxo,
 GA_R3_DPSaan,
 GA_R3_DPSaa,
 GA_R3_SPxDSxon,
 GA_R3_DPSxna,
 GA_R3_SPDSnoaxn,
 GA_R3_SDPxna,
 GA_R3_PDSPnoaxn,
 GA_R3_DSPDSoaxx,
 GA_R3_PDSaxn,
 GA_R3_DSa,
 GA_R3_SDPSnaoxn,
 GA_R3_DSPnoa,
 GA_R3_DSPDxoxn,
 GA_R3_SDPnoa,
 GA_R3_SDPSxoxn,
 GA_R3_SSDxPDxax,
 GA_R3_PDSanan,
 GA_R3_PDSxna,
 GA_R3_SDPSnoaxn,
 GA_R3_DPSDPoaxx,
 GA_R3_SPDaxn,
 GA_R3_PSDPSoaxx,
 GA_R3_DPSaxn,
 GA_R3_DPSxx,
 GA_R3_PSDPSonoxx,
 GA_R3_SDPSonoxn,
 GA_R3_DSxn,
 GA_R3_DPSnax,
 GA_R3_SDPSoaxn,
 GA_R3_SPDnax,
 GA_R3_DSPDoaxn,
 GA_R3_DSPDSaoxx,
 GA_R3_PDSxan,
 GA_R3_DPa,
 GA_R3_PDSPnaoxn,
 GA_R3_DPSnoa,
 GA_R3_DPSDxoxn,
 GA_R3_PDSPonoxn,
 GA_R3_PDxn,
 GA_R3_DSPnax,
 GA_R3_PDSPoaxn,
 GA_R3_DPSoa,
 GA_R3_DPSoxn,
 GA_R3_D,
 GA_R3_DPSono,
 GA_R3_SPDSxax,
 GA_R3_DPSDaoxn,
 GA_R3_DSPnao,
 GA_R3_DPno,
 GA_R3_PDSnoa,
 GA_R3_PDSPxoxn,
 GA_R3_SSPxDSxox,
 GA_R3_SDPanan,
 GA_R3_PSDnax,
 GA_R3_DPSDoaxn,
 GA_R3_DPSDPaoxx,

SciTech SNAP, Graphics Architecture 552

Graphics Device Driver Reference

 GA_R3_SDPxan,
 GA_R3_PSDPxax,
 GA_R3_DSPDaoxn,
 GA_R3_DPSnao,
 GA_R3_DSno,
 GA_R3_SPDSanax,
 GA_R3_SDxPDxan,
 GA_R3_DPSxo,
 GA_R3_DPSano,
 GA_R3_PSa,
 GA_R3_SPDSnaoxn,
 GA_R3_SPDSonoxn,
 GA_R3_PSxn,
 GA_R3_SPDnoa,
 GA_R3_SPDSxoxn,
 GA_R3_SDPnax,
 GA_R3_PSDPoaxn,
 GA_R3_SDPoa,
 GA_R3_SPDoxn,
 GA_R3_DPSDxax,
 GA_R3_SPDSaoxn,
 GA_R3_S,
 GA_R3_SDPono,
 GA_R3_SDPnao,
 GA_R3_SPno,
 GA_R3_PSDnoa,
 GA_R3_PSDPxoxn,
 GA_R3_PDSnax,
 GA_R3_SPDSoaxn,
 GA_R3_SSPxPDxax,
 GA_R3_DPSanan,
 GA_R3_PSDPSaoxx,
 GA_R3_DPSxan,
 GA_R3_PDSPxax,
 GA_R3_SDPSaoxn,
 GA_R3_DPSDanax,
 GA_R3_SPxDSxan,
 GA_R3_SPDnao,
 GA_R3_SDno,
 GA_R3_SDPxo,
 GA_R3_SDPano,
 GA_R3_PDSoa,
 GA_R3_PDSoxn,
 GA_R3_DSPDxax,
 GA_R3_PSDPaoxn,
 GA_R3_SDPSxax,
 GA_R3_PDSPaoxn,
 GA_R3_SDPSanax,
 GA_R3_SPxPDxan,
 GA_R3_SSPxDSxax,
 GA_R3_DSPDSanaxxn,
 GA_R3_DPSao,
 GA_R3_DPSxno,
 GA_R3_SDPao,
 GA_R3_SDPxno,
 GA_R3_DSo,
 GA_R3_SDPnoo,
 GA_R3_P,
 GA_R3_PDSono,
 GA_R3_PDSnao,
 GA_R3_PSno,
 GA_R3_PSDnao,
 GA_R3_PDno,

SciTech SNAP, Graphics Architecture 553

Graphics Device Driver Reference

 GA_R3_PDSxo,
 GA_R3_PDSano,
 GA_R3_PDSao,
 GA_R3_PDSxno,
 GA_R3_DPo,
 GA_R3_DPSnoo,
 GA_R3_PSo,
 GA_R3_PSDnoo,
 GA_R3_DPSoo,
 GA_R3_1
 } GA_rop3CodesType

Prototype In
snap/graphics.h

Description
Raster Operation codes for accelerated rendering functions that support ternary
operations. The set of mix codes is the standard Microsoft ternary Raster Operation
(ROP3) codes between three values, a source, pattern and destination. Note that we
don't list the codes here for brevity.

Note: Some graphics controllers may not support all ROP3 codes due to hardware bugs, so you
must use the GetROP3ExceptionTable function to determine the set of ROP3 codes that
the hardware does not properly handle.

SciTech SNAP, Graphics Architecture 554

Graphics Device Driver Reference

GA_segment

Declaration
struct GA_segment {
 struct GA_segment *next;
 N_int32 x;
 }

Prototype In
snap/graphics.h

Description
Fundamental type definition representing a segment within a span that forms a complex
region. The segments define the X coordinates of the segments that make up the span.
Segments are always in groups of two (start and end segment).

Members
next Next segment in span
x X coordinates of this segment

SciTech SNAP, Graphics Architecture 555

Graphics Device Driver Reference

GA_span

Declaration
struct GA_span {
 struct GA_span *next;
 GA_segment *seg;
 N_int32 y;
 }

Prototype In
snap/graphics.h

Description
Fundamental type definition representing a span within a complex region. A span is
represented as a list of segments that are included in the span.

Members
next Next span in region
seg Index of first segment in span
y Y coordinate of this span

SciTech SNAP, Graphics Architecture 556

Graphics Device Driver Reference

GA_stipple

Declaration
typedef N_uint32 GA_stipple

Prototype In
snap/graphics.h

Description
Fundamental type definition for a 16-bit line stipple pattern. Note that we define it as a
32-bit value so it will be passed as a 32-bit argument on the stack correctly when calling
32-bit code from a 16-bit segment.

SciTech SNAP, Graphics Architecture 557

Graphics Device Driver Reference

GA_trap

Declaration
typedef struct {
 N_uint32 y;
 N_uint32 count;
 N_fix32 x1;
 N_fix32 x2;
 N_fix32 slope1;
 N_fix32 slope2;
 } GA_trap

Prototype In
snap/graphics.h

Description
Parameter block for the 2D DrawTrap function. This structure is used to pass in the
information about a trapezoid to be rendered by the hardware to the driver DrawTrap
function.

Members
y Starting Y coordinate
count Number of scanlines to draw
x1 Starting X1 coordinate in 16.16 fixed point
x2 Starting X2 coordinate in 16.16 fixed point
slope1 First edge slope in 16.16 fixed point format
slope2 Second edge slope in 16.16 fixed point format

SciTech SNAP, Graphics Architecture 558

Graphics Device Driver Reference

GA_videoFuncs

Prototype In
snap/graphics.h

Description
Function group containing all hardware video overlay functions available for the device.
These functions are used to create, destroy and manage hardware video overlay buffers
used for hardware video playback.

Note: Be sure to fill in the dwSize member of this structure when you call GA_queryFunctions
to the correct size of the structure at compile time!

SciTech SNAP, Graphics Architecture 559

Graphics Device Driver Reference

AllocVideoBuffer

Allocate a video overlay buffer of specific dimensions and pixel format.

Declaration
GA_buf * NAPI GA_videoFuncs::AllocVideoBuffer(
 N_int32 width,
 N_int32 height,
 N_int32 format)

Prototype In
snap/graphics.h

Parameters
width Width of the video overlay window in pixels
height Height of the video overlay window in pixels
format Pixel format for the input data (GA_V) ideoBufferFormatsType

GA_VideoBufferFormatsType
Info

AllocVideoBuffer deoBuffer t lorKey VideoFrame
EndVideoFrame

Return Value
Pointer to allocated video overlay buffer, NULL on failure.

Description
This function allocates a hardware video overlay buffer in offscreen video memory with
the given dimensions and pixel format. The video overlay window dimensions are used
by the driver to determine the stretch factor required to interpolate the input video data
to the video output window on the display screen. The format parameter is used to
determine the pixel format of the input bitmap data stored in offscreen video memory
by the application. The video input formats flags supported are defined by

. The calling application should check the VideoWindows
member of the GA_mode structure for the hardware video overlay window
capabilities of the graphics hardware for a specific display mode. This function will fail
if the application requests an unssupported format or if the requested features are not
available for the device installed in the machine. This function will also fail if the
maximum number of video overlay buffers supported by the hardware have already
been allocated.

See Also
, FreeVi , SetVideoOutpu , SetVideoCo , Start ,

SciTech SNAP, Graphics Architecture 560

Graphics Device Driver Reference

EndVideoFrame

End decoding a video frame.

Declaration
void NAPI GA_videoFuncs::EndVideoFrame(
 GA_buf *videoBuffer)

Prototype In
snap/graphics.h

Parameters
videoBuffer Video overlay buffer to use

Description
This function ends the process of displaying a frame of hardware video data on the
screen for the specified video overlay buffer. The calling application calls this function
after completing the decoding of the next frame so that the hardware can perform any
necessary completion steps to get the next frame of video data to the screen. Some
hardware does automatic decoding of the video data on the fly and will simply do
nothing for this step. However hardware video can be implemented on some hardware
by doing a stretch blit from offscreen video memory with interpolation, and this
function will execute the stretch blit to get the data to the screen. Some hardare may also
use this function to implement double buffering to ensure smooth, tear free video
overlay operation.

See Also
AllocVideoBuffer deoBuffer t lorKey VideoFrame
EndVideoFrame

, FreeVi , SetVideoOutpu , SetVideoCo , Start ,

SciTech SNAP, Graphics Architecture 561

Graphics Device Driver Reference

FreeVideoBuffer

Frees a video overlay buffer and associated offscreen video memory

Declaration
void NAPI GA_videoFuncs::FreeVideoBuffer(
 GA_buf *videoBuffer)

Prototype In

AllocVideoBuffer deoBuffer t lorKey VideoFrame
EndVideoFrame

snap/graphics.h

Parameters
videoBuffer Video overlay buffer to free

Description
This function frees a previously allocated hardware video overlay buffer, freeing all
internal structures and the offscreen video memory used for the overlay buffer.

See Also
, FreeVi , SetVideoOutpu , SetVideoCo , Start ,

SciTech SNAP, Graphics Architecture 562

Graphics Device Driver Reference

SetVideoColorKey

Set the color key for a specific video overlay buffer.

Declaration
void NAPI GA_videoFuncs::SetVideoColorKey(
 GA_buf *videoBuffer,
 GA_color colorKeyLo,
 GA_color colorKeyHi)

Prototype In
snap/graphics.h

Parameters
videoBuffer Video overlay buffer to use
colorKeyLo Color key low value (key for single color key mode)
colorKeyHi Color key high value (ignored for single color key mode)

Description
This function sets the color key (or color key range) for the specified video overlay
buffer. If single key color keying is enabled, the the colorKeyLo parameter represents the
single color key, otherwise the two keys are used to represent the range of colors for the
color key.

See Also
AllocVideoBuffer deoBuffer t lorKey VideoFrame
EndVideoFrame

, FreeVi , SetVideoOutpu , SetVideoCo , Start ,

SciTech SNAP, Graphics Architecture 563

Graphics Device Driver Reference

SetVideoOutput

Set the video overlay output window dimensions and pixel format.

Declaration
N_int32 NAPI GA_videoFuncs::SetVideoOutput(
 GA_buf *videoBuffer,
 N_int32 left,
 N_int32 top,
 N_int32 width,
 N_int32 height,
 N_int32 flags)

Prototype In
snap/graphics.h

Parameters
videoBuffer Video overlay buffer to use
left Left pixel coordinate of the output window
top Top pixel coordinate of the output window
width Width of the input data in pixels
height Height of the input data in pixels
flags Pixel format for the input data (GA_V) ideoOutputFlagsType

AllocVideoBuffer deoBuffer t lorKey VideoFrame
EndVideoFrame

Return Value
0 on success, -1 on failure

Description
This function sets the video output window dimensions for a particular hardware video
overlay buffer. This represents the rectangular region on the display screen where the
video data will be displayed. The video output rectangle is used by the driver to
determine the stretch factor required to interpolate the input video data in offscreen
video memory to the video output window on the display screen.

The flags field modifies the way the output image is displayed, and the values are
defined in the GA_VideoOutputFlagsType enumeration (enabling interpolation and color
keying etc).

See Also
, FreeVi , SetVideoOutpu , SetVideoCo , Start ,

SciTech SNAP, Graphics Architecture 564

Graphics Device Driver Reference

StartVideoFrame

Start decoding a video frame.

Declaration
N_uint32 NAPI GA_videoFuncs::StartVideoFrame(
 GA_buf *videoBuffer)

Prototype In
snap/graphics.h

Parameters
videoBuffer Video overlay buffer to use

Description
This function begins the process of displaying a frame of hardware video data on the
screen for the specified video overlay buffer. The calling application calls this function
before decoding the next frame in the video so that the hardware can perform any setup
or synchronisation steps necessary before the application begins decoding the next
frame of video data.

AllocVideoBuffer deoBuffer t lorKey VideoFrame
EndVideoFrame

See Also
, FreeVi , SetVideoOutpu , SetVideoCo , Start ,

SciTech SNAP, Graphics Architecture 565

Graphics Device Driver Reference

GA_videoInf

Declaration
typedef struct {
 N_uint32 dwSize;
 N_uint32 VideoInputFormats;
 N_uint32 VideoOutputFlags;
 N_uint16 VideoMinXScale;
 N_uint16 VideoMinYScale;
 N_uint16 VideoMaxXScale;
 N_uint16 VideoMaxYScale;
 } GA_videoInf

Prototype In

Minimum X scale factor (1/value)
Minimum Y scale factor (1/value)
Maximum X scale factor
Maximum Y scale factor

snap/graphics.h

Description
Hardware video window information. There is a single structure for each available
hardware video window, and defines the capabilities of that hardware video window.
The VideoMinXScale and VideoMinYScale members defines the inverse of minimum
scale ratio supported by the hardware in the each direction. For instance if the value is 4,
the hardware can only scale video down to a window that is 1/4 the size of the source
input video. The VideoMaxXScale and VideoMaxYScale define the maxium scale ratio
supported by the hardware. For instance if the value is 4, the hardware can only scale
video data up to a window that 4 times the size of the source input video.

Members
dwSize Set to size of structure in bytes
VideoInputFormats Hardware video input format flags
VideoOutputFlags Hardware video output format capabilities
VideoMinXScale
VideoMinYScale
VideoMaxXScale
VideoMaxYScale

SciTech SNAP, Graphics Architecture 566

Graphics Device Driver Reference

MCS_controlsType

Declaration
typedef enum {
 MCS_brightness = 0x10,
 MCS_contrast = 0x12,
 MCS_redVideoGain = 0x16,
 MCS_greenVideoGain = 0x18,
 MCS_blueVideoGain = 0x1A,
 MCS_redVideoBlackLevel = 0x6C,
 MCS_greenVideoBlackLevel = 0x6E,
 MCS_blueVideoBlackLevel = 0x70,
 MCS_focus = 0x1C,
 MCS_horizontalPosition = 0x20,
 MCS_horizontalSize = 0x22,
 MCS_horizontalPincushion = 0x24,
 MCS_horizontalPincushionBalance = 0x26,
 MCS_horizontalMisconvergence = 0x28,
 MCS_horizontalLinearity = 0x2A,
 MCS_horizontalLinearityBalance = 0x2C,
 MCS_verticalPosition = 0x30,
 MCS_verticalSize = 0x32,
 MCS_verticalPincushion = 0x34,
 MCS_verticalPincushionBalance = 0x36,
 MCS_verticalMisconvergence = 0x38,
 MCS_verticalLinearity = 0x3A,
 MCS_verticalLinearityBalance = 0x3C,
 MCS_parallelogramDistortion = 0x40,
 MCS_trapezoidalDistortion = 0x42,
 MCS_tilt = 0x44,
 MCS_topCornerDistortionControl = 0x46,
 MCS_topCornerDistortionBalance = 0x48,
 MCS_bottomCornerDistortionControl = 0x4A,
 MCS_bottomCornerDistortionBalance = 0x4C,
 MCS_hue = 0x50,
 MCS_saturation = 0x52,
 MCS_colorCurveAdjust = 0x54,
 MCS_horizontalMoire = 0x56,
 MCS_verticalMoire = 0x58,
 MCS_audioSpeakerVolume = 0x62,
 MCS_microphoneSpeakerVolume = 0x64,
 MCS_horAdd = 0x72,
 MCS_verAdd = 0x74,
 MCS_bufferAdd = 0x76,
 MCS_update = 0x78,
 MCS_adjustFocalPlane = 0x7A,
 MCS_adjustZoom = 0x7C,
 MCS_trapezoid = 0x7E,
 MCS_keystone = 0x80,
 MCS_horFlip = 0x82,
 MCS_vertFlip = 0x84,
 MCS_displayScaling = 0x86,
 MCS_velocityScanModulation = 0x88,
 MCS_tvColorSaturation = 0x8A,
 MCS_tvSharpness = 0x8C,
 MCS_tvContrast = 0x8E,
 MCS_tvHue = 0x90,
 MCS_tvBlackLevel = 0x92,

 MCS_selectColorPreset = 0x14,
 MCS_inputLevelSelect1 = 0x5E,

SciTech SNAP, Graphics Architecture 567

Graphics Device Driver Reference

 MCS_inputLevelSelect2 = 0xCC,
 MCS_inputSourceSelect1 = 0x60,
 MCS_inputSourceSelect2 = 0xCE,
 MCS_outputSourceSelect1 = 0xD0,
 MCS_outputSourceSelect2 = 0xD2,
 MCS_onScreenDisplayEnable = 0x66,
 MCS_onScreenDisplay = 0xCA,
 MCS_languageSelect = 0x68,
 MCS_stereoMode = 0xD4,
 MCS_displayPowerMode = 0xD6,
 MCS_presetColorTemp = 0xD8,
 MCS_scanFormat = 0xDA,
 MCS_displayMode = 0xDC,
 MCS_operationMode = 0xDE,

 MCS_autoSizeCenter = 0xA2,
 MCS_polarityHorizontalSync = 0xA4,
 MCS_polarityVerticalSync = 0xA6,
 MCS_syncType = 0xA8,
 MCS_screenOrientation = 0xAA,
 MCS_horFrequency = 0xAC,
 MCS_vertFrequency = 0xAE,

 MCS_degauss = 0x00
 } MCS_controlsType

Prototype In

This enumeration defines the known Monitor Control Command Set controls that can be
used to control a monitor via the DDC2Bi protocol. The monitor controls listed here are
defined by the VESA Monitor Control Command Set V1.0 specification. Please consult
the VESA specification (V1.0 or later) for more information.

snap/ddc.h

Description

SciTech SNAP, Graphics Architecture 568

Graphics Device Driver Reference

MCS_polarityFlagsType

Declaration
typedef enum {
 MCS_vSyncPositive = 0x01,
 MCS_hSyncPositive = 0x02
 } MCS_polarityFlagsType

Description

Prototype In
snap/ddc.h

This enumeration defines the flags returned by the MCS_getTimingReport function.

Members
MCS_vSyncPositive Indicates that vertical sync is positive
MCS_hSyncPositive Indicates that horizontal sync is positive

SciTech SNAP, Graphics Architecture 569

Graphics Device Driver Reference

MDBX_errCodes

Declaration
typedef enum {
 MDBX_ok,
 MDBX_fileNotFound,
 MDBX_corrupt,
 MDBX_outOfMemory,
 MDBX_notFound,
 MDBX_IOError,
 MDBX_parseError,
 MDBX_invalidDB,
 MDBX_dbNotOpen,
 MDBX_noRecords
 } MDBX_errCodes

Prototype In
snap/monitor.h

Description

Error codes returned by monitor database routines

Members
MDBX_ok No error
MDBX_fileNotFound Database file not found
MDBX_corrupt Database is corrupted
MDBX_outOfMemory Not enough memory to load DB
MDBX_notFound Entry was not found in DB
MDBX_IOError Fatal I/O error
MDBX_parseError Error parsing monitor database
MDBX_invalidDB Database handle is invalid
MDBX_dbNotOpen Attempted to access the database before opening it

SciTech SNAP, Graphics Architecture 570

Graphics Device Driver Reference

N_errorType

Declaration
typedef enum {
 nOK,
 nNotDetected,
 nNotPOSTed,
 nDriverNotFound,
 nCorruptDriver,
 nLoadMem,
 nOldVersion,
 nMemMapError,
 nIOError,
 nIRQHookFailed,
 nNotCertified,
 nInternalError,
 nOutOfMemory,
 nOutOfResources,
 nInvalidParameter,
 nNoAGPSupport,
 nInvalidLicense,
 nNotLicensed,
 nMaxError
 } N_errorType

Prototype In
snap/common.h

Description
Error codes returned by N_status to indicate the driver load status if loading the device
driver failed.

Members
nOK No error
nNotDetected Hardware not detected
nNotPOSTed Hardware has not been POSTed
nDriverNotFound Driver file not found
nCorruptDriver File loaded not a driver file
nLoadMem Not enough memory to load driver
nOldVersion Driver file is an older version
nMemMapError Could not map physical memory areas
nIOError General I/O error
nIRQHookFailed Could not hook required hardware IRQ
nNotCertified Driver is not certified
nInternalError Internal device driver error
nOutOfMemory Not enough memory to complete operation
nOutOfResources Not enough spare resources to complete operation
nInvalidParameter Invalid parameter passed to function
nNoAGPSupport No AGP support services found
nInvalidLicense License is invalid
nNotLicensed Feature is not licensed

SciTech SNAP, Graphics Architecture 571

Graphics Device Driver Reference

N_fix32

Declaration
typedef long N_fix32

Prototype In
snap/common.h

Description
Fundamental type definition for a 32-bit fixed point value. The fixed point value is
interpreted as a 16.16 fixed point number, with 16 integral bits and 16 fractional bits.

SciTech SNAP, Graphics Architecture 572

Graphics Device Driver Reference

N_flt32

Declaration
typedef float N_flt32

Prototype In
snap/common.h

Description
Fundamental type definition for a 32-bit floating point number. The number is stored as
an IEEE 754 floating point number with 1 sign bit, 8 exponent bits and 23 mantissa bits.

SciTech SNAP, Graphics Architecture 573

Graphics Device Driver Reference

N_int16

Declaration
typedef short N_int16

Prototype In
snap/common.h

Description
Fundamental type definition for a 16-bit signed value.

SciTech SNAP, Graphics Architecture 574

Graphics Device Driver Reference

N_int32

Declaration
typedef long N_int32

Prototype In
snap/common.h

Description
Fundamental type definition for a 32-bit signed value.

SciTech SNAP, Graphics Architecture 575

Graphics Device Driver Reference

N_int8

Declaration
typedef char N_int8

Prototype In
snap/common.h

Description
Fundamental type definition for an 8-bit signed value.

SciTech SNAP, Graphics Architecture 576

Graphics Device Driver Reference

N_physAddr

Declaration
typedef unsigned long N_physAddr

Prototype In
snap/common.h

Description
Fundamental type definition for a system physical address

SciTech SNAP, Graphics Architecture 577

Graphics Device Driver Reference

N_uint16

Declaration
typedef unsigned short N_uint16

Prototype In
snap/common.h

Description
Fundamental type definition for a 16-bit unsigned value.

SciTech SNAP, Graphics Architecture 578

Graphics Device Driver Reference

N_uint32

Declaration
typedef unsigned long N_uint32

Prototype In
snap/common.h

Description
Fundamental type definition for a 32-bit unsigned value.

SciTech SNAP, Graphics Architecture 579

Graphics Device Driver Reference

N_uint8

Declaration
typedef unsigned char N_uint8

Prototype In
snap/common.h

Description
Fundamental type definition for an 8-bit unsigned value.

SciTech SNAP, Graphics Architecture 580

Graphics Device Driver Reference

PE_errorCodes

Declaration
typedef enum {
 PE_ok,
 PE_fileNotFound,
 PE_outOfMemory,
 PE_invalidDLLImage,
 PE_unableToInitLibC,
 PE_unknownImageFormat
 } PE_errorCodes

Prototype In
drvlib/peloader.h

Description
Defines the error codes returned by the library

Members
PE_ok No error
PE_fileNotFound DLL file not found
PE_outOfMemory Out of memory loading DLL
PE_invalidDLLImage DLL image is invalid or corrupted
PE_unableToInitLibC Unable to initialise the C runtime library
PE_unknownImageFormat DLL image is in a format that is not supported

SciTech SNAP, Graphics Architecture 581

Graphics Device Driver Reference

REF2D_driver

Prototype In
snap/graphics.h

Description
Structure for the 2d referster rasteriser, which is returned by the REF2D_loadDrive
function. This structure also contains all the function pointers used to communicate with
the 2d reference rasteriser library.

r

Note: Be sure to fill in the dwSize member of this structure when you call GA_queryFunctions
to the correct size of the structure at compile time!

SciTech SNAP, Graphics Architecture 582

Graphics Device Driver Reference

DrawRectExtSW

Draws a rectangle entirely in software to a memory buffer

Declaration
void NAPI REF2D_driver::DrawRectExtSW(
 void *buffer,
 N_int32 dstPitch,
 N_int32 left,
 N_int32 top,
 N_int32 width,
 N_int32 height,
 GA_color color,
 N_int32 mix)

Prototype In
snap/ref2d.h

Parameters
buffer

Address of buffer to draw into
dstPitch Scanline pitch of buffer to draw into
left Left coordinate of the rectangle to draw
top Top coordinate of the rectangle to draw
width Width of the rectangle in pixels
height Height of the rectangle in scanlines
color Color to fill the rectangle with
mix Mix to use for drawing the rectangle

Description
This function is provided to allow the application or shell driver to quickly draw a
rectangle in a specific color and mix, anywhere in system memory. The drawing is
always done in software, and the buffer can have any starting address and pitch, but all
drawing is done in the currently active color depth for the reference rasteriser in use.

SciTech SNAP, Graphics Architecture 583

Graphics Device Driver Reference

ForceSoftwareOnly

Force software rendering on or off

Declaration
N_int32 NAPI REF2D_driver::ForceSoftwareOnly(
 N_int32 enable)

Prototype In
snap/ref2d.h

Parameters
enable True to enable software rendering, false if not

Description
This function is provided to allow the application or shell driver to quickly enable or
disable software only rendering. When software only rendering is disabled, a
combination of hardware and software functions is used for best performance. When
software only rendering is forced, all rendering is done entirely in software.

This is most useful as an application or shell driver debugging aid, to help determine if a
problem is hardware specific or not.

SciTech SNAP, Graphics Architecture 584

Graphics Device Driver Reference

PostSwitchPhysicalResolution

Fix up the software rasteriser after a mode switch has occured

Declaration
void NAPI REF2D_driver::PostSwitchPhysicalResolution(void)

Prototype In

formDisplaySwitch
PollForDisplaySwitch

ormDisplaySwitch

PerformDisplaySwitch

snap/ref2d.h

Description
This function is used to to re-initialise the internals for the reference rasteriser library
after a physical mode switch has occured (ie: Per after

 returned true. Mostly this entails fixing up the internal software
renderer to handle changes in hardware functions, such as hardware cursor support etc
for the new mode. Application and shell drivers must always call this function after
calling Perf .

See Also

SciTech SNAP, Graphics Architecture 585

Graphics Device Driver Reference

QueryFunctions

Returns the function pointers for the specified ref2d function group.

Declaration
ibool NAPI REF2D_driver::QueryFunctions(
 N_uint32 id,
 void *funcs)

Prototype In
snap/ref2d.h

Parameters
id Identifier for the function group to get pointers for
funcs Pointer to function block to fill in

Return Value
True if the requested function group is available, false if not.

Description
This function is the similar to GA_queryFunctions function except that the functions are
queried via the 2d reference rasteriser library. This is the function that application level
code should use to get access to the SNAP rendering functions that are fleshed out with
software rendered functions as necessary.

Note: Application code should not call this function directly, but instead call
REF2D_queryFunctions.

Note: To allow for future compatibility, all function blocks begin with a dwSize member. The
caller is expected to fill in the dwSize member with the size of the function block being
retrieved before calling QueryFunctions. If the driver exports more functions than the
application knows about, only a subset of the functions are copied to the application. If the
application expects more functions than the driver provides, the non-existant functions
are set to NULL pointers by QueryFunctions, and the remainder copies from the driver.

See Also
REF2D_queryFunctions

SciTech SNAP, Graphics Architecture 586

Graphics Device Driver Reference

RotateBitmap

Sets the software rasteriser active drawing buffer.

Declaration
void * NAPI REF2D_driver::RotateBitmap(
 void *src,
 N_int32 bitsPerPixel,
 N_int32 *stride,
 N_int32 width,
 N_int32 height)

Prototype In
snap/ref2d.h

Parameters
src Pointer to the source bitmap to rotate
bitsPerPixel Pixel depth of the source bitmap in bits
stride Stride of the source bitmap in bytes
width Width of the source bitmap
height Height of the source bitmap

Return Value
Pointer to the rotated bitmap image in video memory

Description
This optional function, when implemented, will perform any necessary rotation or
transformations on the source bitmap in as needed by the active filter drivers (ie:
rotation, flipped, multi-controller etc). The resulting rotated or transformed bitmap will
be stored in offscreen video memory, and a pointer to it returned to the caller.

SciTech SNAP, Graphics Architecture 587

Graphics Device Driver Reference

SetColorCompareMask

Force the software raseriser color compare mask

Declaration
N_uint32 NAPI REF2D_driver::SetColorCompareMask(
 N_uint32 mask)

Prototype In
snap/ref2d.h

Parameters
mask

Color compare mask to use

Description
This function is used to override the internal software rendering color compare mask
used for source and destination transparent blit functions. If this mask is set to
0xFFFFFFFF, compare compare masking is disabled (the default state). Otherwise it is
enabled. This is primarily used by the conformance tests to ensure that color compares
are done with the appropriate color mask, while regular application and shell driver
code does not do this for speed reasons.

SciTech SNAP, Graphics Architecture 588

Graphics Device Driver Reference

SetDrawBuffer

Sets the software rasteriser active drawing buffer.

Declaration
N_int32 NAPI REF2D_driver::SetDrawBuffer(
 GA_buffer *drawBuf,
 void *framebuffer,
 N_int32 bitsPerPixel,
 GA_pixelFormat *pf,
 GA_devCtx *hwCtx,
 N_int32 softwareOnly)

Prototype In
snap/ref2d.h

Parameters
drawBuf Buffer to make the active drawing buffer
framebuffer Pointer to the start of frameBuffer memory
bitsPerPixel Color depth for the buffer
pf Pixel format for the buffer
hwCtx SNAP driver to use (NULL if none)
softwareOnly True to force software only mode

Return Value
0 on success, -1 on failure.

Description
This function allows the application to make a video memory or system memory buffer
the active rendering buffer for all subsequent drawing commands for the 2d reference
rasteriser. This function mimics SetDrawBuffer, however it also allows the software
rasteriser to be pointed at a system memory buffer for drawing without any hardware
acceleration at all.

If the hwCtx parameter is set to NULL, this function will enable only software rendering
to a system memory buffer pointed to by the frameBuffer pointer. If the hwCtx member
is not NULL and the frameBuffer pointer points to a located in video memory, hardware
acceleration will be enabled when possible (provided softwareOnly is also set to false). If
the softwareOnly flag is true, no hardware rendering will be used at all.

See Also
SetDrawSurface, SetDrawBuffer

SciTech SNAP, Graphics Architecture 589

Graphics Device Driver Reference

SetDrawSurface

Sets the software rasteriser active drawing buffer.

Declaration
void NAPI REF2D_driver::SetDrawSurface(
 void *surface,
 N_int32 xRes,
 N_int32 yRes,
 N_int32 bytesPerLine,
 N_int32 bitsPerPixel,
 GA_pixelFormat *pf)

Prototype In
snap/ref2d.h

Parameters
surface Pointer to the start of the memory buffer for drawing
xRes X resolution for the surface
yRes Y resolution for the surface
bytesPerLine Scanline width for the memory buffer for drawing

SetDrawBuffer

bitsPerPixel New color depth for the surface
pf New pixel format for the surface

Description
This function changes the software draw buffer quickly, to allow the software renderer
to render to bitmaps in different locations in memory. This function is tuned for speed,
so that we can avoid the overhead of setting the full draw buffer for the reference
rasteriser code.

This function is also used by the buffer manager code to quickly change the draw buffer
surface.

See Also

SciTech SNAP, Graphics Architecture 590

PM Library Reference

This section contains the function and data structure references for the Portability
Manager (PM) library used by the SciTech SNAP Graphics Architecture. The PM library
provides a suite of functions used by the Binary Portable SNAP drivers, which abstract
the Binary Portable driver code from operating system specific functions. There are
versions of the PM library for every supported Operating System and target
environment that provides the interface layer to between the Binary Portable device
drivers and the target Operating System platform. Porting the SciTech SNAP drivers to a
new Operating System is simply a matter of developing a new version of the PM library
for that Operating System. This reference is intended primarily as a reference for
developers porting the PM library to new platforms; application developers should
generally not use the PM library functions directly.

SciTech SNAP, Graphics Architecture 591

REF2D_driver

External Functions

SciTech SNAP, Graphics Architecture 592

CPU_getProcessorName

CPU_getProcessorName

Returns a string defining the speed and name of the processor.

Declaration
char * ZAPI CPU_getProcessorName(void)

Prototype In
cpuinfo.h

Return Value
Processor name string.

Description
This function returns an English string describing the speed and name of the CPU.

See Also
CPU_getProcessorType sorName, CPU_haveMMX, CPU_getProces

SciTech SNAP, Graphics Architecture 593

CPU_getProcessorSpeed

CPU_getProcessorSpeed

Returns the speed of the processor in MHz.

Declaration
ulong ZAPI CPU_getProcessorSpeed(
 ibool accurate)

Prototype In
cpuinfo.h

Parameters
accurate True of the speed should be measured accurately

Return Value
Processor speed in MHz.

Description
This function returns the speed of the CPU in MHz. Note that if the speed cannot be
determined, this function will return 0.

If the accurate parameter is set to true, this function will spend longer profiling the
speed of the CPU, and will not round the CPU speed that is reported. This is important
for highly accurate timing using the Pentium RDTSC instruction, but it does take a lot
longer for the profiling to produce accurate results.

See Also
CPU_getProcessorSpeedInHz, CPU_getProcess , CPU_haveMMX,

orType

CPU_getProcessorName

SciTech SNAP, Graphics Architecture 594

CPU_getProcessorSpeedInHZ

CPU_getProcessorSpeedInHZ

Returns the speed of the processor in Hz.

Declaration
void ZAPI CPU_getProcessorSpeedInHZ(
 ibool accurate,
 CPU_largeInteger *speed)

Prototype In
cpuinfo.h

Return Value
Accurate processor speed in Hz.

Description
This function returns the accurate speed of the CPU in Hz. Note that if the speed cannot
be determined, this function will return 0.

This function is similar to the CPU_getProces function, except that it attempts to
accurately measure the CPU speed in Hz. This is used internally in the Zen Timer
libraries to provide accurate real world timing information. This is important for highly
accurate timing using the Pentium RDTSC instruction, but it does take a lot longer for
the profiling to produce accurate results.

sorSpeed

CPU_getProcessorSpeed cessorType sorName
See Also

, CPU_getPro , CPU_haveMMX, CPU_getProces

SciTech SNAP, Graphics Architecture 595

CPU_getProcessorType

CPU_getProcessorType

Returns the type of processor in the system.

Declaration
uint ZAPI CPU_getProcessorType(void)

Prototype In
cpuinfo.h

Return Value
Numerical identifier for the installed processor

Description
Returns the type of processor in the system. Note that if the CPU is an unknown
Pentium family processor that we don't have an enumeration for, the return value will
be greater than or equal to the value of CPU_UnkPentium (depending on the value
returned by the CPUID instruction).

See Also
CPU_getProcessorSpeed sorName, CPU_haveMMX, CPU_getProces

SciTech SNAP, Graphics Architecture 596

CPU_have3DNow

CPU_have3DNow

Returns true if the processor supports AMD 3DNow! extensions.

Declaration
ibool ZAPI CPU_have3DNow(void)

Prototype In
cpuinfo.h

Return Value
True if 3DNow! is available, false if not.

Description
This function determines if the processor supports the AMD 3DNow! extended
instruction set.

See Also
CPU_getProcessorType PU_getProcessorSpeed
CPU_getProcessorName

, C , CPU_haveMMX, CPU_haveSSE,

SciTech SNAP, Graphics Architecture 597

CPU_haveMMX

CPU_haveMMX

Returns true if the processor supports Intel MMX extensions.

Declaration
ibool ZAPI CPU_haveMMX(void)

Prototype In
cpuinfo.h

Return Value
True if MMX is available, false if not.

Description
This function determines if the processor supports the Intel MMX extended instruction
set.

See Also
CPU_getProcessorType PU_getProcessorSpeed
CPU_getProcessorName

, C , CPU_have3DNow, CPU_haveSSE,

SciTech SNAP, Graphics Architecture 598

CPU_haveRDTSC

CPU_haveRDTSC

Returns true if the processor supports RDTSC extensions.

Declaration
ibool ZAPI CPU_haveRDTSC(void)

Prototype In
cpuinfo.h

Return Value
True if RTSC is available, false if not.

Description
This function determines if the processor supports the RDTSC instruction for reading
the processor time stamp counter.

See Also
CPU_getProcessorType PU_getProcessorSpeed
CPU_getProcessorName

, C , CPU_haveMMX, CPU_have3DNow,

SciTech SNAP, Graphics Architecture 599

CPU_haveSSE

CPU_haveSSE

Returns true if the processor supports Intel SSE extensions.

Declaration
ibool ZAPI CPU_haveSSE(void)

Prototype In
cpuinfo.h

Return Value
True if Intel SSE is available, false if not.

Description
This function determines if the processor supports the Intel SSE extended instruction set.

See Also
CPU_getProcessorType PU_getProcessorSpeed
CPU_getProcessorName

, C , CPU_haveMMX, CPU_have3DNow,

SciTech SNAP, Graphics Architecture 600

EVT_allowLEDS

EVT_allowLEDS

Enables/disables the update of the keyboard LED status indicators.

Declaration
void EVTAPI EVT_allowLEDS(
 ibool enable)

Prototype In
event.h

Parameters
enable True to enable, false to disable

Description
Enables the update of the keyboard LED status indicators. Sometimes it may be
convenient in the application to turn off the updating of the LED status indicators (such
as if a game is using the CAPSLOCK key for some function). Passing in a value of
FALSE to this function will turn off all the LEDS, and stop updating them when the
internal status changes (note however that internally we still keep track of the toggle key
status!).

SciTech SNAP, Graphics Architecture 601

EVT_asciiCode

EVT_asciiCode

Macro to extract the ASCII code from a message.

Declaration
uchar EVT_asciiCode(
 ulong message)

Prototype In
event.h

Parameters
message Message to extract ASCII code from

Return Value
ASCII code extracted from the message.

Description
Macro to extract the ASCII code from the message field of the event_t structure. You pass
the message field to the macro as the parameter and the ASCII code is the result, for
example:

event_t EVT.myEvent;
uchar code;
code = EVT_asciiCode(EVT.myEvent.message);

See Also
EVT_scanCode, EVT_repeatCount

SciTech SNAP, Graphics Architecture 602

EVT_flush

EVT_flush

Flushes all events of a specified type from the event queue.

Declaration
void EVTAPI EVT_flush(
 ulong mask)

Prototype In
event.h

Parameters
mask Mask specifying the types of events that should be removed

Description
Flushes (removes) all pending events of the specified type from the event queue. You
may combine the masks for different event types with a simple logical OR.

See Also
EVT_getNext xt, EVT_halt, EVT_peekNe

SciTech SNAP, Graphics Architecture 603

EVT_getCodePage

EVT_getCodePage

Returns the currently active code page for translation of keyboard characters.

Declaration
codepage_t * EVTAPI EVT_getCodePage(void)

Prototype In
event.h

Return Value
Pointer to the currently active code page translation table.

Description
This function is returns a pointer to the currently active code page translation table. See

 for more information. EVT_setCodePage

EVT_setCodePage
See Also

SciTech SNAP, Graphics Architecture 604

EVT_getHeartBeatCallback

EVT_getHeartBeatCallback

Returns the current user supplied event heartbeat callback function.

Declaration
void EVTAPI EVT_getHeartBeatCallback(
 _EVT_heartBeatCallback *callback,
 void **params)

Prototype In
event.h

Parameters
callback Place to store the address of user supplied event heartbeat

callback
params Place to store the parameters to pass to the event heartbeat

function

Description
This function retrieves the current event heatbeat function that gets called every time
that EVT_getNext or EV is called. T_peekNext

EVT_getNext etHeartBeatCallback
See Also

, EVT_peekNext, EVT_s

SciTech SNAP, Graphics Architecture 605

EVT_getMousePos

EVT_getMousePos

Returns the current mouse cursor location.

Declaration
void EVTAPI EVT_getMousePos(
 int *x,
 int *y)

Prototype In
event.h

Parameters
x Place to store value for mouse x coordinate (screen coordinates)

Place to store value for mouse y coordinate (screen coordinates)

Description

EVT_setMousePos

y

Obtains the current mouse cursor position in screen coordinates. Normally the mouse
cursor location is tracked using the mouse movement events that are posted to the event
queue when the mouse moves, however this routine provides an alternative method of
polling the mouse cursor location.

See Also

SciTech SNAP, Graphics Architecture 606

EVT_getNext

EVT_getNext

Retrieves the next pending event from the event queue.

Declaration
ibool EVTAPI EVT_getNext(
 event_t *evt,
 ulong mask)

Pointer to structure to return the event info in
Mask specifying the types of events that should be removed

Return Value

Retrieves the next pending event from the event queue, and stores it in a event_t
structure. The mask parameter is used to specify the type of events to be removed, and
can be any logical combination of any of the flags defined by the EVT_eventType
enumeration.

Note: You should always use the EVT_EVERYEVT mask for extracting events from your main

Prototype In
event.h

Parameters
evt
mask

True if an event was pending, false if not.

Description

The what field of the event contains the event code of the event that was extracted. All
application specific events should begin with the EVT_USEREVT code and build from
there. Since the event code is stored in an integer, there is a maximum of 32 different
event codes that can be distinguished. You can store extra information about the event in
the message field to distinguish between events of the same class (for instance the button
used in a EVT_MOUSEDOWN event).

If an event of the specified type was not in the event queue, the what field of the event
will be set to NULLEVT, and the return value will return false.

event loop handler. Using a mask for only a specific type of event for long periods of time
will cause the event queue to fill up with events of the type you are ignoring, eventually
causing the application to hang when the event queue becomes full.

See Also
EVT_flush VT_halt, E , EVT_peekNext

SciTech SNAP, Graphics Architecture 607

EVT_halt

EVT_halt

Halts until and event of the specified type is recieved.

Declaration
void EVTAPI EVT_halt(
 event_t *evt,
 ulong mask)

event.h

Parameters
evt

This functions halts exceution until an event of the specified type is recieved into the
event queue. It does not flush the event queue of events before performing the busy
loop. However this function does throw away any events other than the ones you have
requested via the event mask, to avoid the event queue filling up with unwanted events
(like EVT_KEYUP or EVT_MOUSEMOVE events).

EVT_getNext xt

Prototype In

Pointer to
mask Mask specifying the types of events that should be removed

Description

See Also
, EVT_flush, EVT_peekNe

SciTech SNAP, Graphics Architecture 608

EVT_isKeyDown

EVT_isKeyDown

Determines if a specified key is currently down.

Declaration
ibool EVTAPI EVT_isKeyDown(
 uchar scanCode)

Parameters

Prototype In
event.h

scanCode Scan code to test

Return Value
True of the specified key is currently held down.

Description
This function determines if a specified key is currently down at the time that the call is
made. You simply need to pass in the scan code of the key that you wish to test, and the
MGL will tell you if it is currently down or not. The MGL does this by keeping track of
the up and down state of all the keys.

SciTech SNAP, Graphics Architecture 609

EVT_joyIsPresent

EVT_joyIsPresent

Returns the mask indicating what joystick axes are attached.

Declaration
int EVTAPI EVT_joyIsPresent(void)

Description

EVT_joySetLowerRight, EVT_joySetCenter, EVT_joyIsPresent

Prototype In
event.h

This function is used to detect the attached joysticks, and determine what axes are
present and functioning. This function will re-detect any attached joysticks when it is
called, so if the user forgot to attach the joystick when the application started, you can
call this function to re-detect any newly attached joysticks.

See Also

SciTech SNAP, Graphics Architecture 610

EVT_joySetCenter

EVT_joySetCenter

Calibrates the joystick center position

Declaration
void EVTAPI EVT_joySetCenter(void)

Prototype In
event.h

Usually, assuming that the stick was centered when the event library was initialized,
you really only need to call EVT_joySetLowerRight since the upper left position is usually
always 0,0 on most joysticks. However, the safest procedure is to call all three calibration
functions.

EVT_joySetUpperLeft VT_joySetLowerRight

Description
This function can be used to zero in on better joystick calibration factors, which may
work better than the default simplistic calibration (which assumes the joystick is
centered when the event library is initialised). To use this function, ask the user to hold
the stick in the center position and then have them press a key or button. and then call
this function. This function will then read the joystick and update the calibration factors.

See Also
, E , EVT_joySetCenter

SciTech SNAP, Graphics Architecture 611

EVT_joySetLowerRight

EVT_joySetLowerRight

Calibrates the joystick lower right position

Declaration
void EVTAPI EVT_joySetLowerRight(void)

Description

ht

See Also
EVT_joySetUpperLeft, EVT_joySetCenter, EVT_joyIsPresent

Prototype In
event.h

This function can be used to zero in on better joystick calibration factors, which may
work better than the default simplistic calibration (which assumes the joystick is
centered when the event library is initialised). To use this function, ask the user to hold
the stick in the lower right position and then have them press a key or button. and then
call this function. This function will then read the joystick and update the calibration
factors.

Usually, assuming that the stick was centered when the event library was initialized,
you really only need to call EVT_joySetLowerRig since the upper left position is usually
always 0,0 on most joysticks. However, the safest procedure is to call all three calibration
functions.

SciTech SNAP, Graphics Architecture 612

EVT_joySetUpperLeft

EVT_joySetUpperLeft

Calibrates the joystick upper left position

Declaration
void EVTAPI EVT_joySetUpperLeft(void)

Prototype In

This function can be used to zero in on better joystick calibration factors, which may
work better than the default simplistic calibration (which assumes the joystick is
centered when the event library is initialised). To use this function, ask the user to hold
the stick in the upper left position and then have them press a key or button. and then
call this function. This function will then read the joystick and update the calibration
factors.

ht

EVT_joySetUpperLeft, EVT_joySetLowerRight, EVT_joyIsPresent

event.h

Description

Usually, assuming that the stick was centered when the event library was initialized,
you really only need to call EVT_joySetLowerRig since the upper left position is usually
always 0,0 on most joysticks. However, the safest procedure is to call all three calibration
functions.

See Also

SciTech SNAP, Graphics Architecture 613

EVT_peekNext

EVT_peekNext

Peeks at the next pending event in the event queue.

Declaration

event.h

Pointer to structure to return the event info in
Mask specifying the types of events that should be removed

Return Value
True if an event is pending, false if not.

EVT_flush VT_getNext

ibool EVTAPI EVT_peekNext(
 event_t *evt,
 ulong mask)

Prototype In

Parameters
evt
mask

Description
Peeks at the next pending event of the specified type in the event queue. The mask
parameter is used to specify the type of events to be peeked at, and can be any logical
combination of any of the flags defined by the EVT_eventType enumeration.

In contrast to EVT_getNext, the event is not removed from the event queue. You may
combine the masks for different event types with a simple logical OR.

See Also
, E , EVT_halt

SciTech SNAP, Graphics Architecture 614

EVT_pollJoystick

EVT_pollJoystick

Polls the joystick for position and button information.

Prototype In

This routine is used to poll analogue joysticks for button and position information. It
should be called once for each main loop of the user application, just before processing
all pending events via EVT_getNext. All information polled from the joystick will be
posted to the event queue for later retrieval.

Declaration
void EVTAPI EVT_pollJoystick(void)

event.h

Description

Note: Most analogue joysticks will provide readings that change even though the joystick has
not moved. Hence if you call this routine you will likely get an EVT_JOYMOVE event
every time through your event loop.

See Also
EVT_getNext, EVT_peekNext, EVT_joySetUpperLeft, EVT_joySetLowerRight,
EVT_joySetCenter, EVT_joyIsPresent

SciTech SNAP, Graphics Architecture 615

EVT_post

EVT_post

Posts a user defined event to the event queue

Declaration

event.h

Information about which window got the event
Type code for message to post
Event specific message to post
Event specific modifier flags to post

EVT_flush VT_getNext xt

ibool EVTAPI EVT_post(
 ulong which,
 ulong what,
 ulong message,
 ulong modifiers)

Prototype In

Parameters
which
what
message
modifiers

Return Value
True if event was posted, false if event queue is full.

Description
This routine is used to post user defined events to the event queue.

See Also
, E , EVT_peekNe , EVT_halt

SciTech SNAP, Graphics Architecture 616

EVT_repeatCount

EVT_repeatCount

Macro to extract the repeat count from a message.

Declaration
short EVT_repeatCount(
 ulong message)

Prototype In
event.h

Parameters

Description

EVT_asciiCode

message Message to extract repeat count from

Return Value
Repeat count extracted from the message.

Macro to extract the repeat count from the message field of the event structure. The
repeat count is the number of times that the key repeated before there was another
keyboard event to be place in the queue, and allows the event handling code to avoid
keyboard buffer overflow conditions when a single key is held down by the user. If you
are processing a key repeat code, you will probably want to check this field to see how
many key repeats you should process for this message.

See Also
, EVT_repeatCount

SciTech SNAP, Graphics Architecture 617

EVT_scanCode

EVT_scanCode

Macro to extract the keyboard scan code from a message.

Declaration
uchar EVT_scanCode(
 ulong message)

Prototype In
event.h

Parameters
message Message to extract scan code from

Return Value
Keyboard scan code extracted from the message.

Description
Macro to extract the keyboard scan code from the message field of the event structure.
You pass the message field to the macro as the parameter and the scan code is the result,
for example:

event_t EVT.myEvent;
uchar code;
code = EVT_scanCode(EVT.myEvent.message);

Note: Scan codes in the event library are not really hardware scan codes, but rather virtual scan
codes as generated by a low level keyboard interface driver. All virtual scan code values are
defined by the EVT_scanCodesType enumeration, and will be identical across all supports
OS'es and platforms.

See Also
EVT_asciiCode, EVT_repeatCount

SciTech SNAP, Graphics Architecture 618

EVT_setCodePage

EVT_setCodePage

Sets the currently active code page for translation of keyboard characters.

Declaration
void EVTAPI EVT_setCodePage(
 codepage_t *page)

Prototype In
event.h

Parameters
page New code page to make active

Description
This function is used to set a new code page translation table that is used to translate
virtual scan code values to ASCII characters for different keyboard configurations. The
default is usually US English, although if possible the PM library will auto-detect the
correct code page translation for the target OS if OS services are available to determine
what type of keyboard is currently attached.

See Also
EVT_getCodePage

SciTech SNAP, Graphics Architecture 619

EVT_setHeartBeatCallback

EVT_setHeartBeatCallback

Installs a user supplied event heartbeat callback function.

Declaration
void EVTAPI EVT_setHeartBeatCallback(
 _EVT_heartBeatCallback callback,
 void *params)

Prototype In
event.h

Parameters
callback Address of user supplied event heartbeat callback
params Parameters to pass to the event heartbeat function

Description
This function allows the application programmer to install an event heatbeat function
that gets called every time that EVT_getNext or E is called. This is primarily
useful for simulating text mode cursors inside event handling code when running in
graphics modes as opposed to hardware text modes.

VT_peekNext

EVT_getNext artBeatCallback
See Also

, EVT_peekNext, EVT_getHe

SciTech SNAP, Graphics Architecture 620

EVT_setMousePos

EVT_setMousePos

Set the mouse position for the event module

Declaration
void EVTAPI EVT_setMousePos(
 int x,
 int y)

Prototype In
event.h

Parameters
x X coordinate to move the mouse cursor position to
y Y coordinate to move the mouse cursor position to

Description
This function moves the mouse cursor position for the event module to the specified
location.

See Also
EVT_getMousePos

SciTech SNAP, Graphics Architecture 621

EVT_setUserEventFilter

EVT_setUserEventFilter

Installs a user supplied event filter callback for event handling.

Declaration
void EVTAPI EVT_setUserEventFilter(
 _EVT_userEventFilter filter)

Prototype In
event.h

Description
This function allows the application programmer to install an event filter callback for
event handling. Once you install your callback, the MGL event handling routines will
call your callback with a pointer to the new event that will be placed into the event
queue. Your callback can the modify the contents of the event before it is placed into the
queue (for instance adding custom information or perhaps high precision timing
information).

If your callback returns FALSE, the event will be ignore and will not be posted to the
event queue. You should always return true from your event callback unless you plan to
use the events immediately that they are recieved.

Note: Your event callback may be called in response to a hardware interrupt and will be
executing in the context of the hardware interrupt handler under MSDOS (ie: keyboard
interrupt or mouse interrupt). For this reason the code pages for the callback that you
register must be locked in memory with the PM_lockCodePages function. You must also
lock down any data pages that your function needs to reference as well.

Note: You can also use this filter callback to process events at the time they are activated by the
user (ie: when the user hits the key or moves the mouse), but make sure your code runs as
fast as possible as it will be executing inside the context of an interrupt handler on some
systems.

See Also
EVT_getNext, EVT_peekNext

SciTech SNAP, Graphics Architecture 622

LZTimerCount

LZTimerCount

Returns the current count for the Long Period Zen Timer.

Declaration
ulong ZAPI LZTimerCount(void)

Prototype In
ztimer.h

Return Value
Count that has elapsed in microseconds.

Description
Obsolete function. You should use the LZTimerCountExt function instead which allows
for multiple timers running at the same time.

SciTech SNAP, Graphics Architecture 623

LZTimerCountExt

LZTimerCountExt

Returns the current count for the Long Period Zen Timer.

Declaration
ulong ZAPI LZTimerCountExt(
 LZTimerObject *tm)

Prototype In
ztimer.h

Parameters
tm Timer object to compute the elapsed time with.

Return Value
Count that has elapsed in microseconds.

Description
Returns the current count that has elapsed between calls to LZTimerOn and LZTimerOff
in microseconds.

See Also
LZTimerOnExt apExt, LZTimerOffExt, LZTimerL

SciTech SNAP, Graphics Architecture 624

LZTimerLap

LZTimerLap

Returns the current count for the Long Period Zen Timer and keeps it running.

Declaration
ulong ZAPI LZTimerLap(void)

Prototype In
ztimer.h

Return Value
Count that has elapsed in microseconds.

Description
Obsolete function. You should use the LZTimerL function instead which allows for
multiple timers running at the same time.

apExt

SciTech SNAP, Graphics Architecture 625

LZTimerLapExt

LZTimerLapExt

Returns the current count for the Long Period Zen Timer and keeps it running.

Declaration
ulong ZAPI LZTimerLapExt(
 LZTimerObject *tm)

Prototype In
ztimer.h

Parameters
tm Timer object to do lap timing with

Return Value
Count that has elapsed in microseconds.

Description
Returns the current count that has elapsed since the last call to LZTimerOn in
microseconds. The time continues to run after this function is called so you can call this
function repeatedly.

See Also
LZTimerOnExt, LZTimerOffExt, LZTimerCountExt

SciTech SNAP, Graphics Architecture 626

LZTimerOff

LZTimerOff

Stops the Long Period Zen Timer counting.

Declaration
void ZAPI LZTimerOff(void)

Prototype In
ztimer.h

Description
Obsolete function. You should use the LZTimerOffExt function instead which allows for
multiple timers running at the same time.

SciTech SNAP, Graphics Architecture 627

LZTimerOffExt

LZTimerOffExt

Stops the Long Period Zen Timer counting.

Declaration
void ZAPI LZTimerOffExt(
 LZTimerObject *tm)

Prototype In
ztimer.h

Parameters
tm Timer object to stop timing with

Description
Stops the Long Period Zen Timer counting and latches the count. Once you have
stopped the timer you can read the count with LZT . If you need highly
accurate timing, you should use the on and off functions rather than the lap function
since the lap function does not subtract the overhead of the function calls from the timed
count.

imerCount

LZTimerOnExt
See Also

, LZTimerLapExt, LZTimerCountExt

SciTech SNAP, Graphics Architecture 628

LZTimerOn

LZTimerOn

Starts the Long Period Zen Timer counting.

Declaration
void ZAPI LZTimerOn(void)

Prototype In
ztimer.h

Description
Obsolete function. You should use the LZTimerOnExt function instead which allows for
multiple timers running at the same time.

SciTech SNAP, Graphics Architecture 629

LZTimerOnExt

LZTimerOnExt

Starts the Long Period Zen Timer counting.

Declaration
void ZAPI LZTimerOnExt(
 LZTimerObject *tm)

Prototype In
ztimer.h

Parameters
tm Timer object to start timing with

Description
Starts the Long Period Zen Timer counting. Once you have started the timer, you can
stop it with LZTimerOff or you can latch the current count with LZTimerL . ap

The Long Period Zen Timer uses a number of different high precision timing
mechanisms to obtain microsecond accurate timings results whenever possible. The
following different techniques are used depending on the operating system, runtime
environment and CPU on the target machine. If the target system has a Pentium CPU
installed which supports the Read Time Stamp Counter instruction (RDTSC), the Zen
Timer library will use this to obtain the maximum timing precision available.

Under 32-bit Windows, if the Pentium RDTSC instruction is not available, we first try to
use the Win32 QueryPerformanceCounter API, and if that is not available we fall back
on the timeGetTime API which is always supported.

Under 32-bit DOS, if the Pentium RDTSC instruction is not available, we then do all
timing using the old style 8253 timer chip. The 8253 timer routines provide highly
accurate timings results in pure DOS mode, however in a DOS box under Windows or
other Operating Systems the virtualization of the timer can produce inaccurate results.

Note: Because the Long Period Zen Timer stores the results in a 32-bit unsigned integer, you
can only time periods of up to 2^32 microseconds, or about 1hr 20mins. For timing longer
periods use the Ultra Long Period Zen Timer.

See Also
LZTimerOffExt, LZTimerLapExt, LZTimerCountExt

SciTech SNAP, Graphics Architecture 630

PCI_accessReg

PCI_accessReg

Function to read/write values to PCI congfiguration space registers

Declaration
ulong PCIAPI PCI_accessReg(
 int index,
 ulong value,
 int func,
 PCIDeviceInfo *info)

Prototype In
pcilib.h

Parameters
index Index of the register to access
value Value to write to the register for write access
func Function to implement (PCIAcce) ssRegFlags

ssRegFlags

PCI_getNumDevices eg I_writeRegBlock

info PCI device information block for device to access

Return Value
The value read from the register for read operations

Description
This function can be used to read or write, BYTE, WORD and DWORD values to and
from PCI configuration space registers. Please refer to the PCIAcce type for the
different operations supported. The PCI device that is accessed is the one described by
the PCIDeviceInfo structure passed in the info parameter (or more correctly the PCIslot
value stored within this structure).

See Also
, PCI_enumerate, PCI_accessR , PCI_readRegBlock PC

SciTech SNAP, Graphics Architecture 631

PCI_enumerate

PCI_enumerate

Enumerates all devices on the PCI bus

Declaration
int PCIAPI PCI_enumerate(
 PCIDeviceInfo info[])

Prototype In
pcilib.h

Parameters
info Array of PCIDeviceInfo structures to fill in

Return Value
Number of PCI devices found and enumerated on the PCI bus, 0 if not PCI.

Description
Function to enumerate all available devices on the PCI bus into an array of configuration
information blocks.

See Also
PCI_getNumDevices eg I_writeRegBlock, PCI_enumerate, PCI_accessR , PCI_readRegBlock PC

SciTech SNAP, Graphics Architecture 632

PCI_getNumDevices

PCI_getNumDevices

Returns number of devices on the PCI bus

Declaration
int PCIAPI PCI_getNumDevices(void)

Prototype In
pcilib.h

Return Value
Number of PCI devices found and enumerated on the PCI bus, 0 if not PCI.

Description
Function to enumerate the number of available devices on the PCI bus and return the
number found.

See Also
PCI_getNumDevices eg I_writeRegBlock, PCI_enumerate, PCI_accessR , PCI_readRegBlock PC

SciTech SNAP, Graphics Architecture 633

PCI_readRegBlock

PCI_readRegBlock

Function to read a block of PCI congfiguration space registers

Declaration
void PCIAPI PCI_readRegBlock(
 PCIDeviceInfo *info,
 int index,
 void *dst,
 int count)

Prototype In
pcilib.h

Parameters
info PCI device information block for device to access
index Index of register to start reading from
dst Place to store the values read from configuration space
count Count of bytes to read from configuration space

Description
This function is used to read a block of PCI configuration space registers from the
configuration space into the passed in data block. This function will properly handle
reading non-DWORD aligned data from the configuration space correctly.

See Also
PCI_getNumDevices eg I_writeRegBlock, PCI_enumerate, PCI_accessR , PCI_readRegBlock PC

SciTech SNAP, Graphics Architecture 634

PCI_writeRegBlock

PCI_writeRegBlock

Function to read a block of PCI congfiguration space registers

Declaration
void PCIAPI PCI_writeRegBlock(
 PCIDeviceInfo *info,
 int index,
 void *src,
 int count)

Prototype In
pcilib.h

Parameters
info PCI device information block for device to access
index Index of register to start reading from
src Place to store the values read from configuration space
count Count of bytes to read from configuration space

Description
This function is used to write a block of PCI configuration space registers to the
configuration space from the passed in data block. This function will properly handle
writing non-DWORD aligned data to the configuration space correctly.

See Also
PCI_getNumDevices eg I_writeRegBlock, PCI_enumerate, PCI_accessR , PCI_readRegBlock PC

SciTech SNAP, Graphics Architecture 635

PE_freeLibrary

PE_freeLibrary

Frees a loaded Portable Binary DLL

Declaration
void PEAPI PE_freeLibrary(
 PE_MODULE *hModule)

Prototype In
drvlib/peloader.h

Parameters
hModule Handle to a loaded PE DLL library to free

Description
This function frees a loaded PE DLL library from memory.

See Also
PE_getProcAddress, PE_loadLibrary

SciTech SNAP, Graphics Architecture 636

PE_getError

PE_getError

Returns the error code for the last operation

Declaration
int PEAPI PE_getError(void)

Prototype In
drvlib/peloader.h

Return Value
Error code for the last operation.

See Also
PE_getProcAddress, PE_loadLibrary

SciTech SNAP, Graphics Architecture 637

PE_getFileSize

PE_getFileSize

Find the actual size of a PE file image

Declaration
ulong PEAPI PE_getFileSize(
 FILE *f,
 ulong startOffset)

Prototype In
drvlib/peloader.h

Parameters
f Handle to open file to read driver from
startOffset Offset to the start of the driver within the file

Return Value
Size of the DLL file on disk, or -1 on error

Description
This function scans the headers for a Portable Binary DLL to determine the length of the
DLL file on disk.

SciTech SNAP, Graphics Architecture 638

PE_getProcAddress

PE_getProcAddress

Gets a function address from a Portable Binary DLL

Declaration
void * PEAPI PE_getProcAddress(
 PE_MODULE *hModule,
 const char *szProcName)

Prototype In
drvlib/peloader.h

Parameters
hModule Handle to a loaded PE DLL library
szProcName Name of the function to get the address of

Return Value
Pointer to the function, or NULL on failure.

Description
This function searches for the named, exported function in a loaded PE DLL library, and
returns the address of the function. If the function is not found in the library, this
function return NULL.

See Also
PE_loadLibrary, PE_freeLibrary

SciTech SNAP, Graphics Architecture 639

PE_loadLibrary

PE_loadLibrary

Loads a Portable Binary DLL into memory

Declaration
PE_MODULE * PEAPI PE_loadLibrary(
 const char *szDLLName,
 ibool shared)

Prototype In
drvlib/peloader.h

Parameters
szDLLName Name of the PE DLL library to load
shared True to load module into shared memory

Return Value
Handle to loaded PE DLL, or NULL on failure.

Description
This function loads a Portable Binary DLL library from disk, relocates the code and
returns a handle to the loaded library. This function will only work on DLL's that do not
have any imports, since we don't resolve pimport dependencies in this function.

See Also
PE_getProcAddress, PE_freeLibrary

SciTech SNAP, Graphics Architecture 640

PE_loadLibraryExt

PE_loadLibraryExt

Loads a Portable Binary DLL into memory from an open file

Declaration
PE_MODULE * PEAPI PE_loadLibraryExt(
 FILE *f,
 ulong startOffset,
 ulong *size,
 ibool shared)

Prototype In
drvlib/peloader.h

Parameters
f Handle to open file to read driver from
startOffset Offset to the start of the driver within the file
size Place to store the size of the driver loaded
shared True to load module into shared memory

Return Value
Handle to loaded PE DLL, or NULL on failure.

Description
This function loads a Portable Binary DLL library from disk, relocates the code and
returns a handle to the loaded library. This function is the same as the regular

 except that it take a handle to an open file and an offset within that file
for the DLL to load.
PE_loadLibrary

PE_loadLibrary E_freeLibrary
See Also

, PE_getProcAddress, P

SciTech SNAP, Graphics Architecture 641

PE_loadLibraryMGL

PE_loadLibraryMGL

Loads a Portable Binary DLL into memory

Declaration
PE_MODULE * PEAPI PE_loadLibraryMGL(
 const char *szDLLName,
 ibool shared)

Prototype In
drvlib/peloader.h

Parameters
szDLLName Name of the PE DLL library to load
shared True to load module into shared memory

Return Value
Handle to loaded PE DLL, or NULL on failure.

Description
This function is the same as the regular PE_loadLibrary function, except that it looks for
the drivers in the MGL_ROOT/drivers directory or a /drivers directory relative to the
current directory.

See Also
PE_loadLibraryMGL brary, PE_getProcAddress, PE_freeLi

SciTech SNAP, Graphics Architecture 642

PM_agpCommitPhysical

PM_agpCommitPhysical

Commits memory to a range of reserved physical AGP memory addresses

Declaration
ibool PMAPI PM_agpCommitPhysical(
 void *physContext,
 ulong numPages,
 ulong startOffset,
 PM_physAddr *physAddr)

Prototype In
pmapi.h

Parameters
physContext Physical AGP context to commit memory for
numPages Number of pages to be committed
startOffset Offset in pages into the reserved physical context
physAddr Returns the physical address of the committed memory

Return Value
True on success, false on failure.

Description
This function commits AGP memory into the specified physical context that was
previously reserved by a call to PM_agpReserveP . You can use the startOffset and
numPages parameters to only commit portions of the reserved memory range at a time.

hysical

PM_agpReservePhysical
See Also

, PM_agpFreePhysical

SciTech SNAP, Graphics Architecture 643

PM_agpExit

PM_agpExit

Close down the AGP functions

Declaration
void PMAPI PM_agpExit(void)

Prototype In
pmapi.h

Description
This function closes down the loaded AGP driver.

See Also
PM_agpInit

SciTech SNAP, Graphics Architecture 644

PM_agpFreePhysical

PM_agpFreePhysical

Frees a range of commited physical AGP memory pages

Declaration
ibool PMAPI PM_agpFreePhysical(
 void *physContext,
 ulong numPages,
 ulong startOffset)

Prototype In
pmapi.h

Parameters
physContext Physical AGP context to free memory for
numPages Number of pages to be freed
startOffset Offset in pages into the reserved physical context

Return Value
True on success, false on failure.

Description
This function frees memory previously committed by the P
function. Note that you can free a portion of a memory range that was previously
committed if you wish.

M_agpCommitPhysical

PM_agpCommitPhysical
See Also

SciTech SNAP, Graphics Architecture 645

PM_agpInit

PM_agpInit

Initialise the AGP functions

Declaration
ulong PMAPI PM_agpInit(void)

Prototype In
pmapi.h

Return Value
Size of AGP aperture in MB on success, 0 on failure.

Description
This function initialises the AGP driver in the system and returns the size of the
available AGP aperture in megabytes if an AGP bus is found. If there is no AGP bus or
the driver could not be loaded, this function returns 0.

See Also
PM_agpExit, PM_agpReservePhysical

SciTech SNAP, Graphics Architecture 646

PM_agpReleasePhysical

PM_agpReleasePhysical

Releases a range of reserved physical AGP memory addresses

Declaration
ibool PMAPI PM_agpReleasePhysical(
 void *physContext)

Prototype In
pmapi.h

Parameters
physContext Physical AGP context to release

Return Value
True on success, false on failure.

Description
This function releases a range of physical memory addresses on the system bus which
the AGP controller will respond to. All committed memory for the physical address
range covered by the context will be released.

See Also
PM_agpReservePhysical

SciTech SNAP, Graphics Architecture 647

PM_agpReservePhysical

PM_agpReservePhysical

Reserves a rage of physical addresses of AGP memory

Declaration
ibool PMAPI PM_agpReservePhysical(
 ulong numPages,
 int type,
 void **physContext,
 PM_physAddr *physAddr)

Prototype In
pmapi.h

Parameters
numPages Number of memory pages that should be reserved
type Type of memory to allocate
physContext Returns the physical context handle for the mapping
physAddr Returns the physical address for the mapping

Return Value
True on success, false on failure.

Description
This function reserves a range of physical memory addresses on the system bus which
the AGP controller will respond to. If this function succeeds, the AGP controller can
respond to the reserved physical address range on the bus. However you must first call
AGP_commitPhysical to cause this memory to actually be committed for use before it
can be accessed.

See Also
PM_agpReleasePhysical, PM_agpCommitPhysical

SciTech SNAP, Graphics Architecture 648

PM_allocLockedMem

PM_allocLockedMem

Allocate a block of locked, physical memory for DMA operations.

Declaration
void * PMAPI PM_allocLockedMem(
 uint size,
 ulong *physAddr,
 ibool contiguous,
 ibool below16M)

Prototype In
pmapi.h

Parameters
size Size of memory block to allocate
physAddr Place to return the physical memory address
contiguous True if the block should be contiguous
below16M True if the block must be below 16M physical

Return Value
Linear pointer to memory block, or NULL on failure.

Description
This function is used to allocate a block of locked, physical memory for use in hardware
DMA operations. If the contiguous parameter is set to true, then the memory block
requested must be contiguous in physical memory or this function will fail (requesting
physically contiguous memory usually does not succeed for large blocks except
immediately after the operating system is loaded or during the boot process). If the
below16M flag is set to true, then the physical memory block must be allocated below
the 16Mb physical memory address (required for old ISA bus sound card DMA buffers
for instance). When this function succeeds, it will return a regular C pointer to the
allocated memory block.

Note also that the memory block allocated by this function must also be globally shared,
such that the linear address returned will be valid in all processes in the system at the
same location.

See Also
PM_freeLockedMem

SciTech SNAP, Graphics Architecture 649

PM_allocPage

PM_allocPage

Allocates a page aligned and page sized block of memory

Declaration
void * PMAPI PM_allocPage(
 ibool locked)

Prototype In
pmapi.h

Parameters
locked True if the memory should be locked down, false if not

Return Value
Pointer to the page aligned page of memory allocated, NULL on failure.

Description
This function is used to allocate a single page sized and page aligned block of memory
from the operating system. The memory block may be optionally locked in physical
memory if the locked parameter is set to true.

This function is mostly used to allocate pages of physical memory that are used to back
the AGP memory regions used by graphics drivers. As such there is presently no
requirement for the pages allocated by this function to be globally mapped.

See Also
PM_freePage

SciTech SNAP, Graphics Architecture 650

PM_allocRealSeg

PM_allocRealSeg

Allocate a block of real mode memory

Declaration
void * PMAPI PM_allocRealSeg(
 uint size,
 uint *r_seg,
 uint *r_off)

Prototype In
pmapi.h

Parameters
size Size of memory block to allocate
r_seg Place to store real mode segment address of memory block
r_off Place to store real mode segment offset of memory block

Return Value
Linear pointer to the real mode memory block, NULL on failure.

Description
This function is used to allocate a block of real mode memory for communicating with
the real mode BIOS. If this function succeeds, the r_seg and r_off parameters will be
filled in with the real mode address of the memory block, and the function will return a
regular C style linear pointer to the memory block. This is only supported for operating
systems that support BIOS access (ie: the PM_haveBIOSAcce function returns true). ss

PM_freeRealSeg r
See Also

, PM_mapRealPointe

SciTech SNAP, Graphics Architecture 651

PM_backslash

PM_backslash

Add a file directory separator to the end of the filename.

Declaration
void PMAPI PM_backslash(
 char *s)

Prototype In
pmapi.h

Parameters
s String to append the directory separator character to

Description
This function is a portable way to add a file directory separator to the end of the
filename. The separator added will always work on the target platform, and is used
extensively by binary portable modules that need to construct path names dynamically
that will work properly on the target operating system.

SciTech SNAP, Graphics Architecture 652

PM_blockUntilTimeout

PM_blockUntilTimeout

Block until a specific time has elapsed since the last call

Declaration
void PMAPI PM_blockUntilTimeout(
 ulong milliseconds)

Prototype In
pmapi.h

Parameters
milliseconds Number of milliseconds for delay

Description
This function will block the calling thread or process until the specified number of
milliseconds have passed since the last call to this function. The first time this function is
called, it will return immediately. On subsquent calls it will block until the specified
time has elapsed, or it will return immediately if the time has already elapsed.

This function is useful to provide constant time functionality in a program, such as a
frame rate limiter for graphics applications etc.

See Also
PM_sleep

SciTech SNAP, Graphics Architecture 653

PM_callRealMode

PM_callRealMode

Call a real mode far function.

Declaration
void PMAPI PM_callRealMode(
 uint seg,
 uint off,
 RMREGS *in,
 RMSREGS *sregs)

Prototype In
pmapi.h

Parameters
seg Real mode segment address of function to call
off Real mode segment offset of function to call
in Register block to load before calling interrupt
sregs Segment register block to load and return values in

Description
This function is used call a real mode far function, which is used to call the real mode
BIOS functions and drivers directly. If you make calls to the real mode BIOS functions or
drivers with this function, there is no parameter translation at all. Hence you need to
translate any real mode memory pointers etc passed into and returned from this
function with the PM and PM_mapRealPointe functions. _allocRealSeg r

PM_haveBIOSAccess

PM_int86 M_int86x M_allocRealSeg

When this function executes the real mode far function, the machine registers will be
loaded with the values passed in the 'in' parameter and the segment registers from the
'sregs' parameter. When the function returns, the values in the machine registers will
then be saved into the 'out' parameter and the segment registers into the 'sregs'
parameter.

This is only supported for operating systems that support BIOS access (ie: the
 function returns true).

See Also
, P , P

SciTech SNAP, Graphics Architecture 654

PM_calloc

PM_calloc

Allocate and clear a large memory block.

Declaration
void * PMAPI PM_calloc(
 size_t nelem,
 size_t size)

Prototype In
pmapi.h

Parameters
nelem number of contiguous size-byte units to allocate
size size of unit in bytes

Return Value
Pointer to allocated memory if successful, NULL if out of memory.

Description
Allocates a block of memory of length (size * nelem), and clears the allocated area with
zeros (0). If you have changed the memory allocation routines with the

 function, then calls to this function will actually make calls to the
local memory allocation routines that you have registered.
PM_useLocalMalloc

PM_malloc lloc
See Also

, PM_realloc, PM_free, PM_useLocalMa

SciTech SNAP, Graphics Architecture 655

PM_closeConsole

PM_closeConsole

Closes the OS console.

Declaration
void PMAPI PM_closeConsole(
 PM_HWND hwndConsole)

Prototype In
pmapi.h

Parameters
hwndConsole Console window handle to close

Description
This function closes the OS console, given the console window handle passed back from
the PM_openConsole function.

See Also
PM_openConsole eStateSize oleState eConsoleState, PM_getConsol , PM_saveCons , PM_restor

SciTech SNAP, Graphics Architecture 656

PM_doSuspendApp

PM_doSuspendApp

Suspends the application by switch back to the OS desktop

Declaration
void PMAPI PM_doSuspendApp(void)

Prototype In
pmapi.h

Description
This function suspends the application by switching back to the regular OS desktop,
allowing normal application code to be processed and then waiting for the application
activate command to bring us back to fullscreen mode.

This version only gets called if we have not captured the screen switch in our activate
message loops and will occur if the DirectDraw drivers lose a surface for some reason
while rendering. This should not normally happen, but it is included just to be sure (it
can happen on WinNT/2000/XP if the user hits the Ctrl-Alt-Del key combination). Note
that this code will always spin loop, and we cannot disable the spin looping from this
version (ie: if the user hits Ctrl-Alt-Del under WinNT/2000 the application main loop
will cease to be executed until the user switches back to the application).

SciTech SNAP, Graphics Architecture 657

PM_enableWriteCombine

PM_enableWriteCombine

Enable write combining for a physical memory region

Declaration
ibool PMAPI PM_enableWriteCombine(
 ulong base,
 ulong length,
 uint type);
int PMAPI PM_enableWriteCombine(ulong base,ulong length,uint type)

Prototype In
pmapi.h

Parameters
base Physical base address of region to write combine
length Length of the region to write combine
type Type of write caching to enable (PM) EnableWriteCombineFlags

PMEnableWriteCombineFlags

Description
This function is used to change the write combine caching values for a physical memory
region. The type of caching that can be enabled for the region can be one of the

 types.

Note that most CPU's only have a very limited number of write combine regions
available, so this function must be used as sparingly as possible to ensure the hardware
in the system can get the caching that it needs.

SciTech SNAP, Graphics Architecture 658

PM_enumWriteCombine

PM_enumWriteCombine

Enumerates all write combine regions currently enabled for the processor.

Declaration
int PMAPI PM_enumWriteCombine(
 PM_enumWriteCombine_t callback)

Prototype In
pmapi.h

Parameters
callback Function to callback with write combine information

Return Value
PM_MTRR_ERR_OK on success, otherwise error code.

Description
This function is used to enumerate all write combine regions currently enabled for the
processor.

SciTech SNAP, Graphics Architecture 659

PM_fatalError

PM_fatalError

Report a fatal error condition and halt the program.

Declaration
void PMAPI PM_fatalError(
 const char *msg)

Prototype In
pmapi.h

Parameters
msg Message to display as the fatal error prior to exit

Description
This function is a portable method to report a fatal error condition and then halt
program execution. It will display the error message using whatever mechanism is
appropriate for the operating system. ie: A console text message in DOS, OS/2, Linux
etc, or a popup dialog box for a GUI based environment like Windows, PMSHELL or
X11.

See Also
PM_setFatalErrorCleanup

SciTech SNAP, Graphics Architecture 660

PM_findBPD

PM_findBPD

Function to find a BPD file on the SNAP driver file path

Declaration
ibool PMAPI PM_findBPD(
 const char *dllname,
 char *bpdpath)

Prototype In
pmapi.h

Parameters
dllname Name of the Binary Portable DLL to load
bpdpath Place to store the actual path to the file

Return Value
True if found, false if not.

Description
Finds the location of a specific Binary Portable DLL, by searching all the standard
SciTech SNAP driver locations. If the file is found, we cache the SNAP driver location
internally and search for all drivers relativ to this path for subsequent calls. Hence the
first call to this function should be to find a parent BPD file that defines the root of all the
BPD files in the installation (ie: graphics.bpd for the SNAP Graphics API).

See Also
PM_setLocalBPDPath

SciTech SNAP, Graphics Architecture 661

PM_findClose

PM_findClose

Function to close the find process

Declaration
void PMAPI PM_findClose(
 void *handle)

Prototype In
pmapi.h

Parameters
handle Handle return from PM_findFirstFile

Description
This function is used to close the search handle returned by the PM_findF
function.

irstFile

PM_findFirstFile dNextFile
See Also

, PM_fin

SciTech SNAP, Graphics Architecture 662

PM_findFirstFile

PM_findFirstFile

Function to find the first file matching a search criteria in a directory.

Declaration
void * PMAPI PM_findFirstFile(
 const char *filename,
 PM_findData *findData)

Prototype In
pmapi.h

Parameters
filename Filename mask to see the search with
findData Place to return the found file data

Return Value
Pointer to the find handle created, PM_FILE_INVALID if no more files.

Description
This function is used to find the first file matching a search criteria in a directory. Once
you have found the first file, you can then call PM_findNextFile to find the next file
matching the same search criteria. When you are done, make sure you call PM_findClose
to free the handle returned by this function.

See Also
PM_findNextFile dClose, PM_fin

SciTech SNAP, Graphics Architecture 663

PM_findNextFile

PM_findNextFile

Function to find the next file matching a search criteria in a directory.

Declaration
ibool PMAPI PM_findNextFile(
 void *handle,
 PM_findData *findData)

Prototype In
pmapi.h

Parameters
handle Handle return from PM_findFirstFile
findData Place to return the found file data

Return Value
True if another file is found, false if not.

Description
This function is used to find the next file matching the same search criteria passed to

. You can keep calling PM_findNextFile to find each file that matches
until this function returns false, indicating there are no more files that match. When you
are done, make sure you call PM_findClose to free the handle returned by the

 function.

PM_findFirstFile

PM_findFirstFile

PM_findFirstFile dClose
See Also

, PM_fin

SciTech SNAP, Graphics Architecture 664

PM_flushTLB

PM_flushTLB

Flush the translation lookaside buffer.

Declaration
void PMAPI PM_flushTLB(void)

Prototype In
pmapi.h

Description
This function is used to flush the translation lookaside buffer.

SciTech SNAP, Graphics Architecture 665

PM_free

PM_free

Frees a block of memory.

Declaration
void PMAPI PM_free(
 void *p)

Prototype In
pmapi.h

Parameters
p Pointer to memory block to free

Description
Frees a block of memory previously allocated with either P , PM_calloc or

.
M_malloc

PM_realloc

PM_malloc Malloc
See Also

, PM_calloc, PM_realloc, PM_useLocal

SciTech SNAP, Graphics Architecture 666

PM_freeLibrary

PM_freeLibrary

Unload a shared library.

Declaration
void PMAPI PM_freeLibrary(
 PM_MODULE hModule)

Prototype In
pmapi.h

Parameters
hModule Handle to the module to unload

Description
This function is used to unload a shared library previously loaded with the

 function. PM_loadLibrary

PM_loadLibrary
See Also

, PM_getProcAddress

SciTech SNAP, Graphics Architecture 667

PM_freeLockedMem

PM_freeLockedMem

Free a block of locked physical memory.

Declaration
void PMAPI PM_freeLockedMem(
 void *p,
 uint size,
 ibool contiguous)

Prototype In
pmapi.h

Parameters
p Pointer to the memory block to free
size Size of memory block that was allocated
contiguous True if the block was contiguously allocated

Description
This function is used to free a block of locked, physical memory previously allocated by
the PM_allocLockedMem function. This function must be passed the exact same size and
contiguous values that were passed to the PM_allocLockedMe function, or it may
produce strange results.

m

PM_allocLockedMem
See Also

SciTech SNAP, Graphics Architecture 668

PM_freePage

PM_freePage

Free a page aligned and page sized block of memory

Declaration
void PMAPI PM_freePage(
 void *p)

Prototype In
pmapi.h

Parameters
p Linear pointer to the page of memory to free

Description
This function is used to free a page of memory previously allocated with the

 function. PM_allocPage

PM_allocPage
See Also

SciTech SNAP, Graphics Architecture 669

PM_freePhysicalAddr

PM_freePhysicalAddr

Free a physical address mapping allocated by PM_mapPhysicalAddr.

Declaration
void PMAPI PM_freePhysicalAddr(
 void *ptr,
 ulong limit)

Prototype In
pmapi.h

Parameters
ptr Linear address of the address to free
limit Limit for the mapped memory region (length-1)

Description
This function is used to free an address mapping previously allocated with the

 function. PM_mapPhysicalAddr

PM_mapPhysicalAddr
See Also

SciTech SNAP, Graphics Architecture 670

PM_freeRealSeg

PM_freeRealSeg

Free a block of real mode memory.

Declaration
void PMAPI PM_freeRealSeg(
 void *mem)

Prototype In
pmapi.h

Parameters
mem Pointer to the memory block to free

Description
This function is used to free a block of real mode memory previously allocated with the

 function. This is only supported for operating systems that support
BIOS access (ie: the PM_haveBIOSAc function returns true).
PM_allocRealSeg

cess

PM_allocRealSeg r
See Also

, PM_mapRealPointe

SciTech SNAP, Graphics Architecture 671

PM_freeShared

PM_freeShared

Frees a block of global shared memory.

Declaration
void PMAPI PM_freeShared(
 void *ptr)

Prototype In
pmapi.h

Parameters
ptr Shared memory block to free

Description
This function is used to free a block of global shared memory previously allocated with
the PM_mallocShared function.

See Also
PM_mallocShared

SciTech SNAP, Graphics Architecture 672

PM_getA0000Pointer

PM_getA0000Pointer

Return a pointer to 0xA0000 physical VGA graphics framebuffer.

Declaration
void * PMAPI PM_getA0000Pointer(void)

Prototype In
pmapi.h

Return Value
Pointer to 0xA0000 physical VGA graphics framebuffer.

Description
This function is used to obtain a pointer to the physical VGA graphics framebuffer
which is located at physical address 0xA0000. This is supported on all operating
systems.

SciTech SNAP, Graphics Architecture 673

PM_getBIOSPointer

PM_getBIOSPointer

Return a pointer to the real mode BIOS data area.

Declaration
void * PMAPI PM_getBIOSPointer(void)

Prototype In
pmapi.h

Return Value
Pointer to the real mode BIOS data area

Description
This function is used to obtain a pointer to the real mode BIOS data area. This is only
possible on machines that provide access to the real mode BIOS, so if the

 function returns false, this function will not return a useful pointer
(so don't try to use it!).
PM_haveBIOSAccess

SciTech SNAP, Graphics Architecture 674

PM_getBootDrive

PM_getBootDrive

Return the drive letter for the boot drive.

Declaration
char PMAPI PM_getBootDrive(void)

Prototype In
pmapi.h

Return Value
Character representing the operating system boot drive.

Description
This function is used to obtain the drive letter for the boot drive used by the operating
system. This is only valid for operating systems that use driver letters, such as DOS,
OS/2 and Windows.

SciTech SNAP, Graphics Architecture 675

PM_getCOMPort

PM_getCOMPort

Return the base I/O port for the specified COM port.

Declaration
int PMAPI PM_getCOMPort(
 int port)

Prototype In
pmapi.h

Parameters
port COM port number to get I/O port for

Return Value
Base I/O port for the specified COM port

Description
This function is used to determine from the operating system what the base I/O port is
for the specified COM port in the system. This is only used presently for software stereo
support on supported operating systems (ie: DOS, Windows 9x and Windows
NT/2000/XP).

SciTech SNAP, Graphics Architecture 676

PM_getConsoleStateSize

PM_getConsoleStateSize

Find the size of the console state buffer.

Declaration
int PMAPI PM_getConsoleStateSize(void)

Prototype In
pmapi.h

Return Value
Size of the console state save buffer in bytes

Description
This function returns the size of the console state save buffer in bytes. This buffer can be
used to save and restore the state of the OS console.

See Also
PM_openConsole veConsoleState
PM_restoreConsoleState nsole

, PM_sa , PM_setSuspendAppCallback,
, PM_closeCo

SciTech SNAP, Graphics Architecture 677

PM_getCurrentPath

PM_getCurrentPath

Return the current operating system path or working directory.

Declaration
char * PMAPI PM_getCurrentPath(
 char *path,
 int maxLen)

Prototype In
pmapi.h

Parameters
path Place to store the path string
maxLen Maximum length of the path string

Return Value
Pointer to the current path string

Description
This function is used to obtain the current operating system path or working directory.
The string is copied into the path parameter, with a maximum length of maxLen
characters. A pointer to path is also returned from the function.

See Also
PM_getdcwd

SciTech SNAP, Graphics Architecture 678

PM_getDirectDrawWindow

PM_getDirectDrawWindow

Returns a pointer to the DirectDraw window

Declaration
PM_HWND PMAPI PM_getDirectDrawWindow(void)

Prototype In
pmapi.h

Return Value
Pointer to the DirectDraw application window.

Description
Return the DirectDraw window handle used by the application. This is used by the
SNAP DirectX driver to find the proper window handle registered by the application for
the DirectX fullscreen application.

Note: This function is Windows specific

See Also
PM_loadDirectDraw _unloadDirectDraw, PM

SciTech SNAP, Graphics Architecture 679

PM_getFileAttr

PM_getFileAttr

Function to get the file attributes for a specific file.

Declaration
uint PMAPI PM_getFileAttr(
 const char *filename)

Prototype In
pmapi.h

Parameters
filename Full path to filename for file to get attributes from

Return Value
Current attributes for the file (PMFileFlagsType)

Description
This function is used to retrieve the current file attributes for a specific file.

See Also
PM_setFileAttr

SciTech SNAP, Graphics Architecture 680

PM_getFileTime

PM_getFileTime

Function to get the file time and date for a specific file.

Declaration
ibool PMAPI PM_getFileTime(
 const char *filename,
 ibool gmTime,
 PM_time *time)

Prototype In
pmapi.h

Parameters
filename Full path to filename for file to get date and time from
gmTime True if time should be in the GMT timezone
time Place to store the file time for the file

Return Value
True on success, false on failure.

Description
This function is used to obtain the file date and time stamp for a specific file. If the
gmTime parameter is true, the time is returned in the GMT time zone, otherwise it is in
the local machine time zone.

See Also
PM_setFileTime

SciTech SNAP, Graphics Architecture 681

PM_getIOPL

PM_getIOPL

Get the I/O priveledge level for the process

Declaration
int PMAPI PM_getIOPL(void)

Prototype In
pmapi.h

Return Value
Current IOPL active for the process

Description
This function is used to obtain the I/O privledge level of the current process.

See Also
PM_setIOPL

SciTech SNAP, Graphics Architecture 682

PM_getLPTPort

PM_getLPTPort

Return the base I/O port for the specified printer port.

Declaration
int PMAPI PM_getLPTPort(
 int port)

Prototype In
pmapi.h

Parameters
port Printer port number to get I/O port for

Return Value
Base I/O port for the specified printer port

Description
This function is used to determine from the operating system what the base I/O port is
for the specified printer port in the system. This is only used presently for software
stereo support on supported operating systems (ie: DOS, Windows 9x and Windows
NT/2000/XP).

SciTech SNAP, Graphics Architecture 683

PM_getMachineName

PM_getMachineName

Get the name of the machine on the network.

Declaration
const char * PMAPI PM_getMachineName(void)

Prototype In
pmapi.h

Return Value
Constant string pointer to the network machine name

Description
This function is used to obtain the machine name for the computer on the network if
possible. This is not always possible for all OS'es (especially when the OS has no
networking!), so in some cases this will simply be a constant value if the network
machine name cannot be determined.

SciTech SNAP, Graphics Architecture 684

PM_getOSName

PM_getOSName

Return the name of the operating system environment.

Declaration
char * PMAPI PM_getOSName(void)

Prototype In
pmapi.h

Return Value
String representing the operating system name

Description
This function returns a string representation of the name of the runtime operating
system environment. This is useful for binary portable code that needs to display or log
the operating system name for informational purposes.

See Also
PM_getOSType

SciTech SNAP, Graphics Architecture 685

PM_getOSType

PM_getOSType

Return the operating system type identifier.

Declaration
long PMAPI PM_getOSType(void)

Prototype In
pmapi.h

Return Value
Flag representing the OS type

Description
This function returns a flag that represents the operating system type, so that binary
portable code that does need to handle OS dependencies internally can do so with
runtime checks if necessary. Please see the %SCITECH%\include\drvlib\os\os.h
header file for the current definition of operating system types supported. This list will
grow as more operating systems are supported by the PM library.

See Also
PM_getOSName

SciTech SNAP, Graphics Architecture 686

PM_getPhysicalAddr

PM_getPhysicalAddr

Find the physical address of a linear memory address for the current process.

Declaration
ulong PMAPI PM_getPhysicalAddr(
 void *p)

Prototype In
pmapi.h

Parameters
p Linear address to convert

Return Value
Physical memory address, or PM_BAD_PHYS_ADDRESS on error.

Description
This function is used to convert a linear address pointer to a physical memory address.
If this fails, or is not supported for some reason, this function will return a value of
PM_BAD_PHYS_ADDRESS.

See Also
PM_mapPhysicalAddr alAddrRange, PM_getPhysic

SciTech SNAP, Graphics Architecture 687

PM_getPhysicalAddrRange

PM_getPhysicalAddrRange

Find physical addresss of a linear memory address for the current process.

Declaration
ibool PMAPI PM_getPhysicalAddrRange(
 void *p,
 ulong length,
 ulong *physAddress)

Prototype In
pmapi.h

Parameters
p Linear address to convert
length Length of memory region to convert
physAddress Array to store physical addresses into

Return Value
True on success, false on error.

Description
This function is used to convert a large linear address pointer to a list of physical
memory addresses. The list of addresses will be one per page for the linear address, and
the addresses will all be page aligned. This is useful to convert a single linear address
block into the list of physical memory pages for the memory to be programmed into
DMA operations etc.

See Also
PM_mapPhysicalAddr alAddr, PM_getPhysic

SciTech SNAP, Graphics Architecture 688

PM_getProcAddress

PM_getProcAddress

Get the address of a named procedure from a shared library.

Declaration
void * PMAPI PM_getProcAddress(
 PM_MODULE hModule,
 const char *szProcName)

Prototype In
pmapi.h

Parameters
hModule Handle to the module to get procedure from
szProcName Name of the procedure to get address of

Return Value
Pointer to the start of the function in the shared library

Description
This function is used to get the address of a named function in a shared library that was
loaded with the PM_loadLibrary.

See Also
PM_loadLibrary Library, PM_free

SciTech SNAP, Graphics Architecture 689

PM_getSNAPConfigPath

PM_getSNAPConfigPath

Return the path to the SNAP configuration files.

Declaration
const char * PMAPI PM_getSNAPConfigPath(void)

Prototype In
pmapi.h

Return Value
Constant string pointer to the SNAP configuration files path

Description
This function is used to obtain the standard path where the SNAP configuration files
should be found. This is usually operating system specific, but it can be overridden for
debugging and development purposes using the SNAP_PATH environment variable. In
most cases this is a 'config' directory below the directory reported by PM_getSNAPPath,
however on some network operating systems with shared directories, the config
directories may be specific to each user while the SNAP binaries live in a shared
directory common to all users. This is the case for instance under the QNX operating
systems.

See Also
PM_getSNAPPath

SciTech SNAP, Graphics Architecture 690

PM_getSNAPPath

PM_getSNAPPath

Return the path to the SNAP driver files.

Declaration
const char * PMAPI PM_getSNAPPath(void)

Prototype In
pmapi.h

Return Value
Constant string pointer to the SNAP path

Description
This function is used to obtain the standard path where the SNAP drivers should be
found. This is usually operating system specific, but it can be overridden for debugging
and development purposes using the SNAP_PATH environment variable.

See Also
PM_getSNAPConfigPath

SciTech SNAP, Graphics Architecture 691

PM_getUniqueID

PM_getUniqueID

Return a unique identifier for the machine if possible.

Declaration
const char * PMAPI PM_getUniqueID(void)

Prototype In
pmapi.h

Return Value
Constant string pointer to the unique identifier

Description
This function is used to obtain a unique identifier string for the computer on the netork
if possible. This is not always possible for all OS'es (especially when the OS has no
networking!), so in some cases this will simply be a constant value if the network
machine name or unique ID cannot be determined.

SciTech SNAP, Graphics Architecture 692

PM_getVESABuf

PM_getVESABuf

Allocate the real mode VESA transfer buffer for communicating with the BIOS.

Declaration
void * PMAPI PM_getVESABuf(
 uint *len,
 uint *rseg,
 uint *roff)

Prototype In
pmapi.h

Parameters
len Place to store the length of the VESA buffer
rseg Place to store the real mode segment of the VESA buffer
roff Place to store the real mode offset of the VESA buffer

Return Value
Pointer to the transfer buffer on success, NULL on failure.

Description
This function is used to allocate the real mode VESA transfer buffer for communicating
with the underlying real mode Video BIOS. If the operating system cannot support
accessing the VESA BIOS functions, this function will return NULL. If this function does
succeed, the length of the buffer will be returned in the len parameter while the real
mode segment and offset of the buffer will be returned in the rseg and roff parameters.
A regular C pointer to the buffer is returned directly and can be used to read and write
data from the transfer buffer.

SciTech SNAP, Graphics Architecture 693

PM_getVGAStateSize

PM_getVGAStateSize

Get the size of the VGA hardware state save buffer

Declaration
int PMAPI PM_getVGAStateSize(void)

Prototype In
pmapi.h

Description
Returns the size of the VGA state buffer.

See Also
PM_saveVGAState restoreVGAState, PM_

SciTech SNAP, Graphics Architecture 694

PM_getch

PM_getch

Wait for and return the next keypress.

Declaration
int PMAPI PM_getch(void)

Prototype In
pmapi.h

Return Value
ASCII code for the key that was pressed

Description
This function waits for and returns the next keypress, and returns the ASCII code of the
key that was pressed. This function is valid only for operating systems that support
running in console modes (DOS, Linux, OS/2 etc).

SciTech SNAP, Graphics Architecture 695

PM_getdcwd

PM_getdcwd

Function to get the current working directory for the specified drive.

Declaration
void PMAPI PM_getdcwd(
 int drive,
 char *dir,
 int len)

Prototype In
pmapi.h

Parameters
drive Drive letter to get working directory for
dir Place to store working directory
len Length of working directory buffer

Description
This function is used to get the current working directory for the specified drive from
the operating system. Under Unix systems, this will always return the current working
directory regardless of what the value of 'drive' is since there is no concept of drives
under Unix.

See Also
PM_getCurrentPath

SciTech SNAP, Graphics Architecture 696

PM_haveBIOSAccess

PM_haveBIOSAccess

Determines if access to the real mode BIOS is available

Declaration
ibool PMAPI PM_haveBIOSAccess(void)

Prototype In
pmapi.h

Return Value
True if the system provides BIOS access, false if not.

Description
This function is used to determine if the operating system can provide access to the real
mode BIOS or not. Many operating systems can provide full access (DOS, Windows 9x,
Linux), others can provide limited access (OS/2) while other still provide no access
(Windows NT/2000/XP, QNX etc).

If you need to call the P functions, you can first call this function to determine if
the BIOS access is available or not. If this function returns false, do not call the PM_in
functions!

M_int86
t86

SciTech SNAP, Graphics Architecture 697

PM_init

PM_init

Initialise the PM library

Declaration
void PMAPI PM_init(void)

Prototype In
pmapi.h

Description
Initialise the PM library and connect to our helper device driver. If we cannot connect to
our helper device driver, we bail out with an error message. Our Windows 9x VxD is
dynamically loadable, so it can be loaded after the system has started. On Windows
NT/2000/XP the device driver sevice must be installed first during application
installation by a system administrator. On OS/2 the SDDHELP.SYS driver must be
installed in the CONFIG.SYS file prior to use. On other platforms this function does not
usually require an external device driver and just initialises the PM library internals.

SciTech SNAP, Graphics Architecture 698

PM_inpb

PM_inpb

Read a byte value from an I/O port

Declaration
uchar PMAPI PM_inpb(
 int port)

Prototype In
pmapi.h

Parameters
port I/O port to read the value from

Return Value
Byte value read from the I/O port

Description
This function is used to read a byte value from an I/O port.

See Also
PM_inpw _inpd _outpb, PM , PM

SciTech SNAP, Graphics Architecture 699

PM_inpd

PM_inpd

Read a double word value from an I/O port

Declaration
ulong PMAPI PM_inpd(
 int port)

Prototype In
pmapi.h

Parameters
port I/O port to read the value from

Return Value
Double word value read from the I/O port

Description
This function is used to read a double word value from an I/O port.

See Also
PM_inpb _inpw _outpb, PM , PM

SciTech SNAP, Graphics Architecture 700

PM_inpw

PM_inpw

Read a word value from an I/O port

Declaration
ushort PMAPI PM_inpw(
 int port)

Prototype In
pmapi.h

Parameters
port I/O port to read the value from

Return Value
Word value read from the I/O port

Description
This function is used to read a word value from an I/O port.

See Also
PM_inpb _inpd _outpb, PM , PM

SciTech SNAP, Graphics Architecture 701

PM_installService

PM_installService

Installs a Windows NT/2000/XP service.

Declaration
ulong PMAPI PM_installService(
 const char *szDriverName,
 const char *szServiceName,
 const char *szLoadGroup,
 ulong dwServiceType)

Prototype In
pmapi.h

Parameters
szDriverName Actual name of the driver to install in the system
szServiceName Name of the service to create
szLoadGroup Load group for the driver (NULL for normal drivers)
dwServiceType Service type to create

Return Value
ERROR_SUCCESS on success, error code on failure.

Description
This function does all the work to install the system service into the system (ie: a
Windows NT style device driver). The driver is not however activated; for that you must
use the PM_startSe function. This version always creates the service with the
SERVICE_BOOT_START start type.

rvice

Note: This function is Windows specific! It is quite useful so it is documented here.

See Also
PM_installServiceExt rvice, PM_startService, PM_stopService, PM_removeSe

SciTech SNAP, Graphics Architecture 702

PM_installServiceExt

PM_installServiceExt

Installs a Windows NT/2000/XP service.

Declaration
ulong PMAPI PM_installServiceExt(
 const char *szDriverName,
 const char *szServiceName,
 const char *szLoadGroup,
 ulong dwServiceType,
 ulong dwStartType)

Prototype In
pmapi.h

Parameters
szDriverName Actual name of the driver to install in the system
szServiceName Name of the service to create
szLoadGroup Load group for the driver (NULL for normal drivers)
dwServiceType Service type to create
dwStartType Service start type to create

Return Value
ERROR_SUCCESS on success, error code on failure.

Description
This function does all the work to install the system service into the system (ie: a
Windows NT style device driver). The driver is not however activated; for that you must
use the PM_startSe function. This version also allows you to specify the service start
type.

rvice

Note: This function is Windows specific! It is quite useful so it is documented here.

See Also
PM_installService veService, PM_startService, PM_stopService, PM_remo

SciTech SNAP, Graphics Architecture 703

PM_int86

PM_int86

Execute a real mode software interrupt.

Declaration
int PMAPI PM_int86(
 int intno,
 RMREGS *in,
 RMREGS *out)

Prototype In
pmapi.h

Parameters
intno Software interrupt number to execute
in Register block to load before calling interrupt
out Register block to load with registers after interrupt was called

Return Value
Value returned in the EAX register.

Description
This function is used execute a real mode software interrupt, which is used to call the
real mode BIOS functions and drivers directly. If you make calls to the real mode BIOS
functions or drivers with this function, there is no parameter translation at all. Hence
you need to translate any real mode memory pointers etc passed into and returned from
this function with the P and PM_mapRealP functions. M_allocRealSeg ointer

PM_haveBIOSAccess

PM_int86x

When this function executes the real mode software interrupt, the machine registers will
be loaded with the values passed in the 'in' parameter. When the interrupt completes,
the values in the machine registers will then be saved into the 'out' parameter.

This is only supported for operating systems that support BIOS access (ie: the
 function returns true).

See Also
, PM_callRealMode, PM_allocRealSeg

SciTech SNAP, Graphics Architecture 704

PM_int86x

PM_int86x

Execute a real mode software interrupt with segment registers

Declaration
int PMAPI PM_int86x(
 int intno,
 RMREGS *in,
 RMREGS *out,
 RMSREGS *sregs)

Prototype In
pmapi.h

Parameters
intno Software interrupt number to execute
in Register block to load before calling interrupt
out Register block to load with registers after interrupt was called
sregs Segment register block to load and return values in

Return Value
Value returned in the EAX register.

Description
This function is used execute a real mode software interrupt, which is used to call the
real mode BIOS functions and drivers directly. If you make calls to the real mode BIOS
functions or drivers with this function, there is no parameter translation at all. Hence
you need to translate any real mode memory pointers etc passed into and returned from
this function with the P and PM_mapRealP functions. M_allocRealSeg ointer

PM_haveBIOSAccess

PM_int86 ode

When this function executes the real mode software interrupt, the machine registers will
be loaded with the values passed in the 'in' parameter. When the interrupt completes,
the values in the machine registers will then be saved into the 'out' parameter.

This version also allows you to pass down segment register values to be passed to the
real mode code with the sregs parameter. On return from this function, sregs will
contain the segment registers that were returned from the function when the real mode
interrupt was completed.

This is only supported for operating systems that support BIOS access (ie: the
 function returns true).

See Also
, PM_callRealM , PM_allocRealSeg

SciTech SNAP, Graphics Architecture 705

PM_isSDDActive

PM_isSDDActive

Returns true if SNAP Graphics is the active display driver in the system.

Declaration
ibool PMAPI PM_isSDDActive(void)

Prototype In
pmapi.h

Return Value
True if SNAP Graphics is active, false if not.

Description
This function is used to determine if the SNAP Graphics display drivers are the active
display drivers in the system or not.

SciTech SNAP, Graphics Architecture 706

PM_kbhit

PM_kbhit

Check if a key has been pressed.

Declaration
int PMAPI PM_kbhit(void)

Prototype In
pmapi.h

Return Value
True if a key was pressed, false if not.

Description
This function check if a key has been pressed. This function is valid only for operating
systems that support running in console modes (DOS, Linux, OS/2 etc).

SciTech SNAP, Graphics Architecture 707

PM_loadDirectDraw

PM_loadDirectDraw

Loads the DirectDraw libraries

Declaration
void * PMAPI PM_loadDirectDraw(
 int device)

Prototype In
pmapi.h

Parameters
device Index of the device to load DirectDraw for (0 for primary)

Return Value
Pointer to the loaded DirectDraw library

Description
Attempts to dynamically load the DirectDraw DLL's and create the DirectDraw objects
that we need. This function is generally never called by application code, but is called by
the DirectX SNAP drivers when the DirectX libraries need to be loaded.

Note: This function is Windows specific

See Also
PM_unloadDirectDraw tDrawWindow, PM_getDirec

SciTech SNAP, Graphics Architecture 708

PM_loadLibrary

PM_loadLibrary

Load an OS specific shared library or DLL.

Declaration
PM_MODULE PMAPI PM_loadLibrary(
 const char *szDLLName)

Prototype In
pmapi.h

Parameters
szDLLName Name of the OS specific library to load

Return Value
Pointer to the loaded module handle, NULL on failure.

Description
This function is used to load an operating system specific shared library or DLL. This is
mostly used by binary portable code that needs to directly interface to operating system
specific shared library code.

If the OS does not support shared libraries, this function simply returns NULL.

See Also
PM_getProcAddress _freeLibrary, PM

SciTech SNAP, Graphics Architecture 709

PM_lockCodePages

PM_lockCodePages

Lock code pages so they won't be paged to disk

Declaration
int PMAPI PM_lockCodePages(
 __codePtr p,
 uint len,
 PM_lockHandle *lh)

Prototype In
pmapi.h

Parameters
p Linear pointer to the memory to lock down
len Length of the memory block to lock down
lh Pointer to the lock handle returned

Description
This function is used to lock a block of memory such that it will not be paged to disk by
the operating systems virtual memory manager. This is mostly used such that interrupt
handlers in device drivers and the data used by the interrupt handlers will never be
paged out to disk.

This version is used to lock code pages in memory.

See Also
PM_unlockCodePages M_lockDataPages, P

SciTech SNAP, Graphics Architecture 710

PM_lockDataPages

PM_lockDataPages

Lock data pages so they won't be paged to disk

Declaration
int PMAPI PM_lockDataPages(
 void *p,
 uint len,
 PM_lockHandle *lh)

Prototype In
pmapi.h

Parameters
p Linear pointer to the memory to lock down
len Length of the memory block to lock down
lh Pointer to the lock handle returned

Description
This function is used to lock a block of memory such that it will not be paged to disk by
the operating systems virtual memory manager. This is mostly used such that interrupt
handlers in device drivers and the data used by the interrupt handlers will never be
paged out to disk.

This version is used to lock data pages in memory.

See Also
PM_unlockDataPages M_lockCodePages, P

SciTech SNAP, Graphics Architecture 711

PM_makepath

PM_makepath

Make a full pathname from split components.

Declaration
void PMAPI PM_makepath(
 char *path,
 const char *drive,
 const char *dir,
 const char *name,
 const char *ext)

Prototype In
pmapi.h

Parameters
path Place to store full path
drive Drive component for path
dir Directory component for path
name Filename component for path
ext Extension component for path

Description
Function to make a full pathname from split components. Under Unix the drive
component will usually be empty. If the drive, dir, name, or ext parameters are null or
empty, they are not inserted in the path string. Otherwise, if the drive doesn't end with a
colon, one is inserted in the path. If the dir doesn't end in a slash, one is inserted in the
path. If the ext doesn't start with a dot, one is inserted in the path.

The maximum sizes for the path string is given by the constant PM_MAX_PATH, which
includes space for the null-terminator.

See Also
PM_splitPath

SciTech SNAP, Graphics Architecture 712

PM_malloc

PM_malloc

Allocate a block of memory.

Declaration
void * PMAPI PM_malloc(
 size_t size)

Prototype In
pmapi.h

Parameters
size Size of block to allocate in bytes

Return Value
Pointer to allocated block, or NULL if out of memory.

Description
Allocates a block of memory of length size. If you have changed the memory allocation
routines with the PM_useLocalMalloc function, then calls to this function will actually
make calls to the local memory allocation routines that you have registered.

See Also
PM_calloc, PM_realloc, PM_free, PM_useLocalMalloc

SciTech SNAP, Graphics Architecture 713

PM_mallocShared

PM_mallocShared

Allocate a block of system global shared memory

Declaration
void * PMAPI PM_mallocShared(
 long size)

Prototype In
pmapi.h

Parameters
size Size of the shared memory block to allocate

Return Value
Pointer to the shared memory block, NULL on failure.

Description
This function is used to allocate a block of shared memory, such that the linear address
returned for this shared memory is identical for all processes in the system. If this cannot
be provided, this function will return NULL.

See Also
PM_freeShared

SciTech SNAP, Graphics Architecture 714

PM_mapPhysicalAddr

PM_mapPhysicalAddr

Map a physical address to a linear address in the callers process.

Declaration
void * PMAPI PM_mapPhysicalAddr(
 ulong base,
 ulong limit,
 ibool isCached)

Prototype In
pmapi.h

Parameters
base Physical base address of the memory to map
limit Limit for the mapped memory region (length-1)
isCached True if the memory should be cached, false if not

PM_freePhysicalAddr Addr

Return Value
Pointer to the mapped memory, false on failure.

Description
This function is used to obtain a pointer to the any physical memory location in the
computer, mapped into the linear address space of the calling process. If the isCached
parameter is set to true, caching will be enabled for this region. If this parameter is off,
caching will be disabled. Caching must always be disabled when accessing memory
mapped registers, as they cannot be cached. Note that this does not enable write
combing for the region; for that you need to call the PM_enableWriteCombine function
(however caching must be enabled before the write combining will work!).

See Also
, PM_getPhysical

SciTech SNAP, Graphics Architecture 715

PM_mapRealPointer

PM_mapRealPointer

Map a real mode pointer to a protected mode pointer.

Declaration
void * PMAPI PM_mapRealPointer(
 uint r_seg,
 uint r_off)

Prototype In
pmapi.h

Parameters
r_seg Real mode segment address to map
r_off Real mode segment offset to map

Description
This function is used to map a real mode pointer in segment:offset format into a
protected mode linear address. This is only supported for operating systems that
support BIOS access (ie: the PM_haveBIOSAccess function returns true).

See Also
PM_allocRealSeg

SciTech SNAP, Graphics Architecture 716

PM_mkdir

PM_mkdir

Function to create a directory.

Declaration
ibool PMAPI PM_mkdir(
 const char *filename)

Prototype In
pmapi.h

Parameters
filename Full path to filename for directory to create

Return Value

This function is used to create a new directory in the file system.

PM_rmdir

True on success, false on failure.

Description

See Also

SciTech SNAP, Graphics Architecture 717

PM_openConsole

PM_openConsole

Opens a console for windowed or fullscreen operation

Declaration
PM_HWND PMAPI PM_openConsole(
 PM_HWND hWndUser,
 int device,
 int xRes,
 int yRes,
 int bpp,
 ibool fullScreen)

Prototype In
pmapi.h

Parameters
hWndUser Pointer to use application window (NULL if none)
device Index of the device to control (0 for primary)
xRes X resolution planned for the fullscreen console mode
yRes Y resolution planned for the fullscreen console mode
bpp Color depth planned for the fullscreen console mode
fullScreen True if the console is fullscreen, false if windowed

Return Value
Pointer to the console window handle

See Also
PM_getConsoleStateSize soleState
PM_restoreConsoleState nsole

Description
This function open a console for output to the screen, creating the main event handling
window if necessary when the hWndUser parameter is set to NULL.

, PM_saveCon , PM_setSuspendAppCallback,
, PM_closeCo

SciTech SNAP, Graphics Architecture 718

PM_outpb

PM_outpb

Write a byte value to an I/O port

Prototype In

port

PM_inpb M_outpw

Declaration
void PMAPI PM_outpb(
 int port,
 uchar val)

pmapi.h

Parameters
I/O port to read the value from

val Value to write to the I/O port

Description
This function is used to write a byte value to an I/O port.

See Also
, P , PM_outpd

SciTech SNAP, Graphics Architecture 719

PM_outpd

PM_outpd

Write a double word value to an I/O port

Declaration
void PMAPI PM_outpd(
 int port,
 ulong val)

Prototype In

PM_inpb M_outpb M_outpw

pmapi.h

Parameters
port I/O port to read the value from
val Value to write to the I/O port

Description
This function is used to write a double word value to an I/O port.

See Also
, P , P

SciTech SNAP, Graphics Architecture 720

PM_outpw

PM_outpw

Write a word value to an I/O port

Declaration
void PMAPI PM_outpw(
 int port,
 ushort val)

Prototype In
pmapi.h

Parameters
port I/O port to read the value from
val Value to write to the I/O port

Description
This function is used to write a word value to an I/O port.

See Also
PM_inpb M_outpb M_outpd, P , P

SciTech SNAP, Graphics Architecture 721

PM_realloc

PM_realloc

Re-allocate a block of memory

Declaration
void * PMAPI PM_realloc(
 void *ptr,
 size_t size)

Prototype In
pmapi.h

Parameters
ptr Pointer to block to resize
size size of unit in bytes

Return Value
Pointer to allocated memory if successful, NULL if out of memory.

Description
This function reallocates a block of memory that has been previously been allocated to
the new of size. The new size may be smaller or larger than the original block of
memory. If you have changed the memory allocation routines with the

 function, then calls to this function will actually make calls to the
local memory allocation routines that you have registered.
PM_useLocalMalloc

PM_malloc oc
See Also

, PM_calloc, PM_free, PM_useLocalMall

SciTech SNAP, Graphics Architecture 722

PM_removeService

PM_removeService

Removes a Windows NT/2000/XP service.

Declaration
ulong PMAPI PM_removeService(
 const char *szServiceName)

Prototype In
pmapi.h

Parameters
szServiceName Name of the service to start

Return Value
ERROR_SUCCESS on success, error code on failure.

Description
This function is used to remove a service completely from the system.

Note: This function is Windows specific! It is quite useful so it is documented here.

See Also
PM_installServiceExt, PM_startService, PM_stopService

SciTech SNAP, Graphics Architecture 723

PM_restartRealTimeClock

PM_restartRealTimeClock

Restarts the real time clock ticking again

Declaration
void PMAPI PM_restartRealTimeClock(
 int frequency)

Prototype In
pmapi.h

Description
This function is used to restart the real time clock ticking. Note that when we are
actually using IRQ0 instead, this functions does nothing.

PM_setRealTimeClockHandler ckFrequency TimeClock
PM_restoreRealTimeClockHandler

See Also
, PM_setRealTimeClo , PM_stopReal ,

SciTech SNAP, Graphics Architecture 724

PM_restoreConsoleState

PM_restoreConsoleState

Restores the state of the OS console.

Declaration
void PMAPI PM_restoreConsoleState(
 const void *stateBuf,
 PM_HWND hwndConsole)

Prototype In
pmapi.h

Parameters
stateBuf State buffer to restore state from
hwndConsole Console window handle

Description
This function restore the state of the OS console that was previously saved with the

 function. PM_saveConsoleState

PM_openConsole eStateSize
PM_saveConsoleState ole

See Also
, PM_getConsol , PM_setSuspendAppCallback,

, PM_closeCons

SciTech SNAP, Graphics Architecture 725

PM_restoreRealTimeClockHandler

PM_restoreRealTimeClockHandler

Restore the original real time clock handler.

Declaration
void PMAPI PM_restoreRealTimeClockHandler(void)

Prototype In
pmapi.h

Description
This function is used to restore the original real time clock handler.

See Also
PM_setRealTimeClockHandler

SciTech SNAP, Graphics Architecture 726

PM_restoreThreadPriority

PM_restoreThreadPriority

Restore the original thread priority.

Declaration
void PMAPI PM_restoreThreadPriority(
 ulong oldPriority)

Prototype In
pmapi.h

Parameters
oldPriority Old thread priority to restore

Description
This function is used to restore the current thread priority to the previous value.

See Also
PM_setThreadPriority

SciTech SNAP, Graphics Architecture 727

PM_restoreVGAState

PM_restoreVGAState

Restore the VGA hardware state from the save buffer

Declaration
void PMAPI PM_restoreVGAState(
 const void *stateBuf)

Prototype In
pmapi.h

Parameters
stateBuf Save buffer to restore the state of the VGA hardware from

Description
Restores the state of all VGA compatible registers from the save buffer passed in the
'stateBuf' parameter.

See Also
PM_getVGAStateSize M_saveVGAState, P

SciTech SNAP, Graphics Architecture 728

PM_rmdir

PM_rmdir

Function to remove a directory.

Declaration
ibool PMAPI PM_rmdir(
 const char *filename)

Prototype In
pmapi.h

Parameters
filename Full path to filename for directory to remove

Return Value
True on success, false on failure.

Description
This function is used to remove a directory from the file system. This function will fail
unless the directory is empty.

PM_mkdir
See Also

SciTech SNAP, Graphics Architecture 729

PM_runningInAWindow

PM_runningInAWindow

Determines if the application is running in a window.

Declaration
ibool PMAPI PM_runningInAWindow(void)

Prototype In
pmapi.h

Return Value
True if running in a window, false if not.

Description
This function is primarily used for console programs that need to know if they are
running in a fullscreen console mode or in a window under a GUI environment.
Presently this function is implemented for DOS and OS/2 console mode programs. It
could also be implemented for Linux console apps also.

SciTech SNAP, Graphics Architecture 730

PM_saveConsoleState

PM_saveConsoleState

Save the state of the OS console.

Declaration
void PMAPI PM_saveConsoleState(
 void *stateBuf,
 PM_HWND hwndConsole)

Prototype In
pmapi.h

Parameters
stateBuf State buffer to save state to

PM_openConsole eStateSize
PM_restoreConsoleState nsole

hwndConsole Console window handle

Description
This function saves the state of the OS console, so that it can be later restored by the
PM_restoreConsoleState. This function must be called to save the console state so that it
can go into graphics mode. On many OS'es this doesn't do much, but on Linux for
instance this properly enabled the console for graphics output, and allows us to properly
restore it later.

See Also
, PM_getConsol , PM_setSuspendAppCallback,

, PM_closeCo

SciTech SNAP, Graphics Architecture 731

PM_saveVGAState

PM_saveVGAState

Save the VGA hardware state into a save buffer

Declaration
void PMAPI PM_saveVGAState(
 void *stateBuf)

Prototype In
pmapi.h

Parameters
stateBuf Place to save the state of the VGA hardware

Description
Save the state of all VGA compatible registers into save buffer passed in the 'stateBuf'
parameter. You must first call the PM_getVGAS function to allocate a buffer big
enough to hold the VGA hardware state before you call this function.

tateSize

PM_getVGAStateSize, PM_restoreVGAState
See Also

SciTech SNAP, Graphics Architecture 732

PM_setDebugLog

PM_setDebugLog

Sets the location of the debug log file.

Declaration
void PMAPI PM_setDebugLog(
 const char *logFilePath)

Prototype In
pmapi.h

Parameters
logFilePath Full file and path name to debug log file.

Description
Sets the name and location of the debug log file. The debug log file is created and
written to when runtime checks, warnings and failure conditions are logged to disk
when code is compiled in CHECKED mode. By default the log file is called 'scitech.log'
and goes into the current SciTech SNAP path for the application. You can use this
function to set the filename and location of the debug log file to your own application
specific directory.

SciTech SNAP, Graphics Architecture 733

PM_setFatalErrorCleanup

PM_setFatalErrorCleanup

Add a user defined PM_fatalErro cleanup function. r

Error

PM_fatalError

Declaration
void PMAPI PM_setFatalErrorCleanup(
 void (PMAPIP cleanup)(void));
void PMAPI PM_setFatalErrorCleanup(PM_fatalCleanupHandler cleanup)

Prototype In
pmapi.h

Parameters
cleanup New fatal error cleanup function to use

Description
This function is provided to allow a user defined fatal error cleanup function to be
registered. If any code call PM_fatal , this cleanup function will be called first,
allowing the cleanup function to put the operating system back into a valid state before
displaying the fatal error message.

See Also

SciTech SNAP, Graphics Architecture 734

PM_setFileAttr

PM_setFileAttr

Function to change the file attributes for a specific file.

Declaration
void PMAPI PM_setFileAttr(
 const char *filename,
 uint attrib)

Prototype In
pmapi.h

Parameters
filename Full path to filename for file to change
attrib New attributes for the file (PMFileFlagsType)

Description
This function is used to file attributes for a specific file to the values passed in the
attribute parameter (a combination of flags defined in PMFileFlagsType). Under Unix
system some of these flags are igonred, such as the hidden and system attributes.

See Also
PM_getFileAttr

SciTech SNAP, Graphics Architecture 735

PM_setFileTime

PM_setFileTime

Function to set the file time and date for a specific file.

Declaration
ibool PMAPI PM_setFileTime(
 const char *filename,
 ibool gmTime,
 PM_time *time)

Prototype In
pmapi.h

Parameters
filename Full path to filename for file to set date and time for
gmTime True if time should be in the GMT timezone
time Time to set for the file

Return Value
True on success, false on failure.

Description
This function is used to set the file date and time stamp for a specific file. If the gmTime
parameter is true, the time passed in should be in the GMT time zone, otherwise it is in
the local machine time zone.

See Also
PM_getFileTime

SciTech SNAP, Graphics Architecture 736

PM_setIOPL

PM_setIOPL

Set the I/O priveledge level for the current process

Declaration
int PMAPI PM_setIOPL(
 int iopl)

Prototype In
pmapi.h

Parameters
iopl New IOPL to make active (0 - 3)

Return Value
Previous IOPL active before the change was made

Description
This function is used to change the I/O privledge level of the current process, so that it
can access I/O ports directly. This works on all supported OS'es to date, even on OS/2
and Windows NT/2000/XP, provided you have the necessary kernel level drivers or
services installed.

See Also
PM_getIOPL

SciTech SNAP, Graphics Architecture 737

PM_setLocalBPDPath

PM_setLocalBPDPath

Function to override the SNAP BPD driver path

Declaration
void PMAPI PM_setLocalBPDPath(
 const char *path)

Prototype In
pmapi.h

Parameters
path Local path to the SciTech SNAP BPD driver files.

Description
This function is used by the application program to override the location of the SciTech
SNAP driver files that are loaded. Normally the loader code will look in the system
SciTech SNAP directories first, then in the 'drivers' directory relative to the current
working directory, and finally relative to the MGL_ROOT environment variable. By
default the local BPD path is always set to the current directory if not initialised.

See Also
PM_findBPD

SciTech SNAP, Graphics Architecture 738

PM_setMaxThreadPriority

PM_setMaxThreadPriority

Increase the thread priority to maximum, if possible.

Declaration
ulong PMAPI PM_setMaxThreadPriority(void)

Prototype In
pmapi.h

Description

PM_restoreThreadPriority

Return Value
Old thread priority

This function is used to set the current thread priority to the maximum possible. This
should not be used very often, but is useful for important timing and calibration loops
that need to be very accurate. The current thread priority that was active before the
change is returned.

See Also

SciTech SNAP, Graphics Architecture 739

PM_setOSCursorLocation

PM_setOSCursorLocation

Set the location of the OS text mode console cursor.

Declaration
void PM_setOSCursorLocation(
 int x,
 int y);
void PMAPI PM_setOSCursorLocation(int x,int y)

Prototype In
pmapi.h

Parameters
x New console cursor X coordinate
y New console cursor Y coordinate

Description
This function is used to set the location of the OS text mode console cursor. This function
is valid only for operating systems that support running in console modes (DOS, Linux,
OS/2 etc).

SciTech SNAP, Graphics Architecture 740

PM_setOSScreenWidth

PM_setOSScreenWidth

Set the dimensions of the OS text mode console.

Declaration
void PM_setOSScreenWidth(
 int width,
 int height);
void PMAPI PM_setOSScreenWidth(int width,int height)

Prototype In
pmapi.h

Parameters
width New width of the OS text mode console
height New height of the OS text mode console

Description
This function set the width and height of the OS text mode console. This should be done
if some method other than OS provided functions is used to change the console mode
(ie: 80x50 or 80x60 instead of 80x25), so that the operating system functions themselves
will know how to output to the new mode. This function is valid only for operating
systems that support running in console modes (DOS, Linux, OS/2 etc).

SciTech SNAP, Graphics Architecture 741

PM_setRealTimeClockFrequency

PM_setRealTimeClockFrequency

Set the real time clock frequency (for stereo modes).

Declaration
void PMAPI PM_setRealTimeClockFrequency(
 int frequency)

Prototype In
pmapi.h

Parameters
frequency New frequency to program the RTC to run at

Description
This function is used to change the real time clock frequency that is used for software
stereo modes by the SNAP Graphics drivers. The interrupt handler must first be
installed with the PM_setRealTimeClo function. ckHandler

PM_setRealTimeClockHandler Clock artRealTimeClock
PM_restoreRealTimeClockHandler

See Also
, PM_stopRealTime , PM_rest ,

SciTech SNAP, Graphics Architecture 742

PM_setRealTimeClockHandler

PM_setRealTimeClockHandler

Set the real time clock handler (used for software stereo modes).

Declaration
ibool PMAPI PM_setRealTimeClockHandler(
 PM_intHandler ih,
 int frequency)

Prototype In
pmapi.h

Parameters
ih New C based interrupt handler to install
frequency New frequency to program the RTC to run at

Return Value
True on success, false on failure.

Description
This function is used to set the real time clock handler that is used for software stereo
modes by the SNAP Graphics drivers. This is presently only supported under DOS,
Windows 9x and Windows NT/2000/XP environments. It is also not supported by
general application programs, only by device driver environments (ie: Win32 apps
cannot use this function, only Windows 9x VxD drivers or Windows NT style kernel
drivers).

See Also
PM_setRealTimeClockFrequency topRealTimeClock startRealTimeClock
PM_restoreRealTimeClockHandler

, PM_s , PM_re ,

SciTech SNAP, Graphics Architecture 743

PM_setSuspendAppCallback

PM_setSuspendAppCallback

Set the suspend application callback for the fullscreen console.

Declaration
void PMAPI PM_setSuspendAppCallback(
 PM_suspendApp_cb saveState)

Prototype In
pmapi.h

Description
This function set the suspend application callback for the fullscreen console. This
callback is used to allow the application to properly save and restore it's own state when
the fullscreen console is being switch away from or being switched back to.

See Also
PM_openConsole onsole, PM_closeC

SciTech SNAP, Graphics Architecture 744

PM_sleep

PM_sleep

Sleep for the specified number of milliseconds.

Declaration
void PMAPI PM_sleep(
 ulong milliseconds)

Prototype In
pmapi.h

Parameters
milliseconds Number of milliseconds to sleep for

Description
This function is used to pause the current process and put it to sleep for the specified
number of milliseconds.

SciTech SNAP, Graphics Architecture 745

PM_splitpath

PM_splitpath

Split a full pathname into components.

Declaration
int PMAPI PM_splitpath(
 const char *path,
 char *drive,
 char *dir,
 char *name,
 char *ext)

Prototype In
pmapi.h

Parameters
path Full path to split
drive Drive component for path
dir Directory component for path
name Filename component for path
ext Extension component for path

Return Value
Flags indicating what components were parsed (PMSplitPathFlags)

Description
Function to split a full pathmame into separate components in the form

X:\DIR\SUBDIR\NAME.EXT

and splits path into its four components. It then stores those components in the strings
pointed to by drive, dir, name and ext. (Each component is required but can be a NULL,
which means the corresponding component will be parsed but not stored).

The maximum sizes for these strings are given by the constants PM_MAX_DRIVE and
PM_MAX_PATH. PM_MAX_DRIVE is always 4, and PM_MAX_PATH is usually at
least 256 characters. Under Unix the dir, name and ext components may be up to the full
path in length.

See Also
PM_makePath

SciTech SNAP, Graphics Architecture 746

PM_startService

PM_startService

Starts a Windows NT/2000/XP service.

Declaration
ulong PMAPI PM_startService(
 const char *szServiceName)

Prototype In
pmapi.h

Parameters
szServiceName Name of the service to start

Return Value
ERROR_SUCCESS on success, error code on failure.

Description
This function is used to start the specified service and make it active.

Note: This function is Windows specific! It is quite useful so it is documented here.

See Also
PM_installServiceExt _stopService ervice, PM , PM_removeS

SciTech SNAP, Graphics Architecture 747

PM_stopRealTimeClock

PM_stopRealTimeClock

Stops the real time clock from ticking

Declaration
void PMAPI PM_stopRealTimeClock(void)

Prototype In
pmapi.h

Description
This function is used to stops the real time clock from ticking. Note that when we are
actually using IRQ0 instead, this functions does nothing (unlike calling

 directly). PM_setRealTimeClockFrequency

PM_setRealTimeClockHandler ckFrequency tRealTimeClock
PM_restoreRealTimeClockHandler

See Also
, PM_setRealTimeClo , PM_restar ,

SciTech SNAP, Graphics Architecture 748

PM_stopService

PM_stopService

Stops a Windows NT/2000/XP service.

Declaration
ulong PMAPI PM_stopService(
 const char *szServiceName)

Prototype In
pmapi.h

Parameters
szServiceName Name of the service to start

Return Value
ERROR_SUCCESS on success, error code on failure.

Description
This function is used to stop the specified service and disable it.

Note: This function is Windows specific! It is quite useful so it is documented here.

See Also
PM_installServiceExt Service, PM_startService, PM_remove

SciTech SNAP, Graphics Architecture 749

PM_unloadDirectDraw

PM_unloadDirectDraw

Unloads the DirectDraw libraries

Declaration
void PMAPI PM_unloadDirectDraw(
 int device)

Prototype In
pmapi.h

Parameters
device Index of the device to unload DirectDraw for (0 for primary)

Description
Frees any DirectDraw objects for the device. We never actually explicitly unload the
ddraw.dll library, since unloading and reloading it is unnecessary since we only want to
unload it when the application exits and that happens automatically.

Note: This function is Windows specific

See Also
PM_loadDirectDraw

SciTech SNAP, Graphics Architecture 750

PM_unlockCodePages

PM_unlockCodePages

Unlock code pages previously locked down.

Declaration
int PMAPI PM_unlockCodePages(
 __codePtr p,
 uint len,
 PM_lockHandle *lh)

Prototype In
pmapi.h

Parameters
p Linear pointer to the memory that was locked down
len Length of the memory block that was locked down
lh Pointer to the lock handle returned from PM_lockCodePages

Description
This function is used to unlock a block of memory that was previously locked down
with the PM_lockCodePa function. ges

PM_lockCodePages

This version is used to unlock data pages in memory.

See Also

SciTech SNAP, Graphics Architecture 751

PM_unlockDataPages

PM_unlockDataPages

Unlock data pages previously locked down.

Declaration
int PMAPI PM_unlockDataPages(
 void *p,
 uint len,
 PM_lockHandle *lh)

Prototype In
pmapi.h

Parameters
p Linear pointer to the memory that was locked down
len Length of the memory block that was locked down
lh Pointer to the lock handle returned from PM_lockDataP ages

ages

PM_lockDataPages

Description
This function is used to unlock a block of memory that was previously locked down
with the PM_lockDataP function.

This version is used to unlock data pages in memory.

See Also

SciTech SNAP, Graphics Architecture 752

PM_useLocalMalloc

PM_useLocalMalloc

Use local memory allocation routines.

Declaration
void PMAPI PM_useLocalMalloc(
 void * (*malloc)(size_t size),
 void * (*calloc)(size_t nelem,size_t size),
 void * (*realloc)(void *ptr,size_t size),
 void (*free)(void *p))

Prototype In
pmapi.h

Parameters
malloc Pointer to new malloc routine to use
calloc Pointer to new caalloc routine to use
realloc Pointer to new realloc routine to use
free Pointer to new free routine to use

Description
Tells the PM library to use a set of user specified memory allocation routines instead of
using the normal malloc/calloc/realloc/free standard C library functions. This is useful
if you wish to use a third party debugging malloc library or perhaps a set of faster
memory allocation functions with the PM library, or any apps that use the PM library
(such as the MGL). Once you have registered your memory allocation routines, all calls
to PM_malloc, PM_calloc, PM_realloc and PM_free will be revectored to your local
memory allocation routines.

Note: This function should be called right at the start of your application, before you initialise
any other components or libraries.

Note: Code compiled into Binary Portable DLL's and Drivers automatically end up calling these
functions via the BPD C runtime library.

See Also
PM_malloc, PM_calloc, PM_realloc, PM_free

SciTech SNAP, Graphics Architecture 753

ULZElapsedTime

ULZElapsedTime

Compute the elapsed time between two timer counts.

Declaration

ztimer.h

Starting time for elapsed count

ulong ZAPI ULZElapsedTime(
 ulong start,
 ulong finish)

Prototype In

Parameters
start
finish Ending time for elapsed count

Return Value
Elapsed timer in resolution counts.

ULZReadTime merResolution

Description
Returns the elapsed time for the Ultra Long Period Zen Timer in units of the timers
resolution (1/18th of a second under DOS). This function correctly computes the
difference even if a midnight boundary has been crossed during the timing period.

See Also
, ULZTi

SciTech SNAP, Graphics Architecture 754

ULZReadTime

ULZReadTime

Reads the current time from the Ultra Long Period Zen Timer.

Declaration
ulong ZAPI ULZReadTime(void)

Return Value

Reads the current Ultra Long Period Zen Timer and returns it’s current count. You can
use the ULZElapsedTime function to find the elapsed time between two timer count
readings.

ULZElapsedTime merResolution

Prototype In
ztimer.h

Current timer value in resolution counts.

Description

See Also
, ULZTi

SciTech SNAP, Graphics Architecture 755

ULZTimerCount

ULZTimerCount

Returns the current count for the Ultra Long Period Zen Timer.

Declaration
ulong ZAPI ULZTimerCount(void)

Return Value

Description
Returns the current count that has elapsed between calls to ULZTimerOn and
ULZTimerOff in resolution counts.

See Also
ULZTimerOn imerResolution

Prototype In
ztimer.h

Count that has elapsed in resolution counts.

, ULZTimerOff, ULZTimerLap, ULZT

SciTech SNAP, Graphics Architecture 756

ULZTimerLap

ULZTimerLap

Returns the current count for the Ultra Long Period Zen Timer and keeps it running.

Declaration
ulong ZAPI ULZTimerLap(void)

Return Value

Returns the current count that has elapsed since the last call to ULZTimerOn in
microseconds. The time continues to run after this function is called so you can call this
function repeatedly.

ULZTimerOn

Prototype In
ztimer.h

Count that has elapsed in resolution counts.

Description

See Also
, ULZTimerOff, ULZTimerCount

SciTech SNAP, Graphics Architecture 757

ULZTimerOff

ULZTimerOff

Stops the Long Period Zen Timer counting.

Declaration
void ZAPI ULZTimerOff(void)

Description
Stops the Ultra Long Period Zen Timer counting and latches the count. Once you have
stopped the timer you can read the count with ULZTimerCount.

ULZTimerOn LZTimerLap

Prototype In
ztimer.h

See Also
, U , ULZTimerCount

SciTech SNAP, Graphics Architecture 758

ULZTimerOn

ULZTimerOn

Starts the Ultra Long Period Zen Timer counting.

Declaration

ztimer.h

Off ap

The Ultra Long Period Zen Timer uses the available operating system services to obtain
accurate timings results with as much precision as the operating system provides, but
with enough granularity to time longer periods of time than the Long Period Zen Timer.
Note that the resolution of the timer ticks is not constant between different platforms,
and you should use the ULZTimerResolution function to determine the number of
seconds in a single tick of the timer, and use this to convert the timer counts to seconds.

See Also
ULZTimerOff, ULZTimerLap, ULZTimerCount, ULZElapsedTime, ULZReadTime

void ZAPI ULZTimerOn(void)

Prototype In

Description
Starts the Ultra Long Period Zen Timer counting. Once you have started the timer, you
can stop it with ULZTimer or you can latch the current count with ULZTimerL .

Under 32-bit Windows, we use the timeGetTime function which provides a resolution of
1 millisecond (0.001 of a second). Given that the timer count is returned as an unsigned
32-bit integer, this we can time intervals that are a maximum of 2^32 milliseconds in
length (or about 1,200 hours or 50 days!).

Under 32-bit DOS, we use the system timer tick which runs at 18.2 times per second.
Given that the timer count is returned as an unsigned 32-bit integer, this we can time
intervals that are a maximum of 2^32 * (1/18.2) in length (or about 65,550 hours or 2731
days!).

SciTech SNAP, Graphics Architecture 759

ULZTimerResolution

ULZTimerResolution

Returns the resolution of the Ultra Long Period Zen Timer.

Declaration
void ZAPI ULZTimerResolution(
 ulong *resolution)

Prototype In

resolution

See Also
ULZReadTime apsedTime ZTimerCount

ztimer.h

Parameters
Place to store the timer in microseconds per timer count.

Description
Returns the resolution of the Ultra Long Period Zen Timer as a 32-bit integer value
measured in microseconds per timer count.

, ULZEl , UL

SciTech SNAP, Graphics Architecture 760

ZTimerInit

ZTimerInit

Initializes the Zen Timer library.

Prototype In
ztimer.h

Declaration
void ZAPI ZTimerInit(void)

Description
Obsolete function. Please use ZTimerInitExt.

SciTech SNAP, Graphics Architecture 761

ZTimerInitExt

ZTimerInitExt

Initializes the Zen Timer library (extended)

Declaration

ztimer.h

True of the speed should be measured accurately

Description

void ZAPI ZTimerInitExt(
 ibool accurate)

Prototype In

Parameters
accurate

This function initializes the Zen Timer library, and must be called before any of the
remaining Zen Timer library functions are called. The accurate parameter is used to
determine whether highly accurate timing should be used or not. If high accuracy is
needed, more time is spent profiling the actual speed of the CPU so that we can obtain
highly accurate timing results, but the time spent in the initialisation routine will be
significantly longer (on the order of 5 seconds).

SciTech SNAP, Graphics Architecture 762

ZTimerInitExt

Type Definitions

SciTech SNAP, Graphics Architecture 763

CPU_largeInteger

CPU_largeInteger

Declaration
typedef struct {
 ulong low;
 ulong high;
 } CPU_largeInteger

Prototype In

Defines the structure for holding 64-bit integers used for storing the values returned by
the Intel RDTSC instruction.

low Low 32-bits of the 64-bit integer

cpuinfo.h

Description

Members

high High 32-bits of the 64-bit integer

SciTech SNAP, Graphics Architecture 764

CPU_processorType

CPU_processorType

Declaration
typedef enum {
 CPU_i386 = 0,
 CPU_i486 = 1,
 CPU_Pentium = 2,
 CPU_PentiumPro = 3,
 CPU_PentiumII = 4,
 CPU_Celeron = 5,
 CPU_PentiumIII = 6,
 CPU_Pentium4 = 7,
 CPU_UnkIntel = 8,
 CPU_Cyrix6x86 = 100,
 CPU_Cyrix6x86MX = 101,
 CPU_CyrixMediaGX = 102,
 CPU_CyrixMediaGXm = 104,
 CPU_UnkCyrix = 105,
 CPU_AMDAm486 = 200,
 CPU_AMDAm5x86 = 201,
 CPU_AMDK5 = 202,
 CPU_AMDK6 = 203,
 CPU_AMDK6_2 = 204,
 CPU_AMDK6_2plus = 205,
 CPU_AMDK6_III = 206,
 CPU_AMDK6_IIIplus = 207,
 CPU_UnkAMD = 208,
 CPU_AMDAthlon = 250,
 CPU_AMDDuron = 251,
 CPU_WinChipC6 = 300,
 CPU_WinChip2 = 301,
 CPU_UnkIDT = 302,
 CPU_ViaCyrixIII = 400,
 CPU_UnkVIA = 401,
 CPU_Alpha = 500,
 CPU_Mips = 600,
 CPU_PowerPC = 700,
 CPU_mask = 0x00000FFF,
 CPU_IDT = 0x00001000,
 CPU_Cyrix = 0x00002000,
 CPU_AMD = 0x00004000,
 CPU_Intel = 0x00008000,
 CPU_VIA = 0x00010000,
 CPU_familyMask = 0x00FFF000,
 CPU_steppingMask = 0x0F000000,
 CPU_steppingShift = 24
 } CPU_processorType

Description
rType

CPU_i386
CPU_i486
CPU_Pentium

Prototype In
cpuinfo.h

Defines the types of processors returned by CPU_getProcesso .

Members
Intel 80386 processor
Intel 80486 processor
Intel Pentium(R) processor

SciTech SNAP, Graphics Architecture 765

CPU_processorType

CPU_PentiumPro Intel PentiumPro(R) processor
CPU_PentiumII
CPU_Celeron
CPU_PentiumIII
CPU_Pentium4

CPU_Cyrix6x86MX

CPU_CyrixMediaGXm
CPU_UnkCyrix

AMD Am486 processor

Intel PentiumII(R) processor
Intel Celeron(R) processor
Intel PentiumIII(R) processor
Intel Pentium4(R) processor

CPU_UnkIntel Unknown Intel processor
CPU_Cyrix6x86 Cyrix 6x86 processor

Cyrix 6x86MX processor
CPU_CyrixMediaGX Cyrix MediaGX processor

Cyrix MediaGXm processor
Unknown Cyrix processor

CPU_AMDAm486
CPU_AMDAm5x86 AMD Am5x86 processor
CPU_AMDK5 AMD K5 processor
CPU_AMDK6 AMD K6 processor
CPU_AMDK6_2 AMD K6-2 processor
CPU_AMDK6_2plus AMD K6-2+ processor
CPU_AMDK6_III AMD K6-III processor
CPU_AMDK6_IIIplus AMD K6-III+ processor
CPU_AMDAthlon AMD Athlon processor
CPU_AMDDuron AMD Duron processor
CPU_UnkAMD Unknown AMD processor
CPU_WinChipC6 IDT WinChip C6 processor
CPU_WinChip2 IDT WinChip 2 processor
CPU_UnkIDT Unknown IDT processor
CPU_ViaCyrixIII Via Cyrix III
CPU_UnkVIA Unknown Via processor
CPU_Alpha DEC Alpha processor
CPU_Mips MIPS processor
CPU_PowerPC PowerPC processor
CPU_mask Mask to remove flags and get CPU type
CPU_IDT This bit is set if the processor vendor is IDT
CPU_Cyrix This bit is set if the processor vendor is Cyrix
CPU_AMD This bit is set if the processor vendor is AMD
CPU_Intel This bit is set if the processor vendor is Intel
CPU_VIA This bit is set if the processor vendor is Via
CPU_familyMask Mask to isolate CPU family
CPU_steppingMask Mask to isolate CPU stepping
CPU_steppingShift Shift factor for CPU stepping

SciTech SNAP, Graphics Architecture 766

EVT_asciiCodesType

EVT_asciiCodesType

Declaration
typedef enum {
 ASCII_ctrlA = 0x01,
 ASCII_ctrlB = 0x02,
 ASCII_ctrlC = 0x03,
 ASCII_ctrlD = 0x04,
 ASCII_ctrlE = 0x05,
 ASCII_ctrlF = 0x06,
 ASCII_ctrlG = 0x07,
 ASCII_backspace = 0x08,
 ASCII_ctrlH = 0x08,
 ASCII_tab = 0x09,
 ASCII_ctrlI = 0x09,
 ASCII_ctrlJ = 0x0A,
 ASCII_ctrlK = 0x0B,
 ASCII_ctrlL = 0x0C,
 ASCII_enter = 0x0D,
 ASCII_ctrlM = 0x0D,
 ASCII_ctrlN = 0x0E,
 ASCII_ctrlO = 0x0F,
 ASCII_ctrlP = 0x10,
 ASCII_ctrlQ = 0x11,
 ASCII_ctrlR = 0x12,
 ASCII_ctrlS = 0x13,
 ASCII_ctrlT = 0x14,
 ASCII_ctrlU = 0x15,
 ASCII_ctrlV = 0x16,
 ASCII_ctrlW = 0x17,
 ASCII_ctrlX = 0x18,
 ASCII_ctrlY = 0x19,
 ASCII_ctrlZ = 0x1A,
 ASCII_esc = 0x1B,
 ASCII_space = 0x20,
 ASCII_exclamation = 0x21,
 ASCII_quote = 0x22,
 ASCII_pound = 0x23,
 ASCII_dollar = 0x24,
 ASCII_percent = 0x25,
 ASCII_ampersand = 0x26,
 ASCII_apostrophe = 0x27,
 ASCII_leftBrace = 0x28,
 ASCII_rightBrace = 0x29,
 ASCII_times = 0x2A,
 ASCII_plus = 0x2B,
 ASCII_comma = 0x2C,
 ASCII_minus = 0x2D,
 ASCII_period = 0x2E,
 ASCII_divide = 0x2F,
 ASCII_0 = 0x30,
 ASCII_1 = 0x31,
 ASCII_2 = 0x32,
 ASCII_3 = 0x33,
 ASCII_4 = 0x34,
 ASCII_5 = 0x35,
 ASCII_6 = 0x36,
 ASCII_7 = 0x37,
 ASCII_8 = 0x38,
 ASCII_9 = 0x39,
 ASCII_colon = 0x3A,

SciTech SNAP, Graphics Architecture 767

EVT_asciiCodesType

 ASCII_semicolon = 0x3B,
 ASCII_lessThan = 0x3C,
 ASCII_equals = 0x3D,
 ASCII_greaterThan = 0x3E,
 ASCII_question = 0x3F,
 ASCII_at = 0x40,
 ASCII_A = 0x41,
 ASCII_B = 0x42,
 ASCII_C = 0x43,
 ASCII_D = 0x44,
 ASCII_E = 0x45,
 ASCII_F = 0x46,
 ASCII_G = 0x47,
 ASCII_H = 0x48,
 ASCII_I = 0x49,
 ASCII_J = 0x4A,
 ASCII_K = 0x4B,
 ASCII_L = 0x4C,
 ASCII_M = 0x4D,
 ASCII_N = 0x4E,
 ASCII_O = 0x4F,
 ASCII_P = 0x50,
 ASCII_Q = 0x51,
 ASCII_R = 0x52,
 ASCII_S = 0x53,
 ASCII_T = 0x54,
 ASCII_U = 0x55,
 ASCII_V = 0x56,
 ASCII_W = 0x57,
 ASCII_X = 0x58,
 ASCII_Y = 0x59,
 ASCII_Z = 0x5A,
 ASCII_leftSquareBrace = 0x5B,
 ASCII_backSlash = 0x5C,
 ASCII_rightSquareBrace = 0x5D,
 ASCII_caret = 0x5E,
 ASCII_underscore = 0x5F,
 ASCII_leftApostrophe = 0x60,
 ASCII_a = 0x61,
 ASCII_b = 0x62,
 ASCII_c = 0x63,
 ASCII_d = 0x64,
 ASCII_e = 0x65,
 ASCII_f = 0x66,
 ASCII_g = 0x67,
 ASCII_h = 0x68,
 ASCII_i = 0x69,
 ASCII_j = 0x6A,
 ASCII_k = 0x6B,
 ASCII_l = 0x6C,
 ASCII_m = 0x6D,
 ASCII_n = 0x6E,
 ASCII_o = 0x6F,
 ASCII_p = 0x70,
 ASCII_q = 0x71,
 ASCII_r = 0x72,
 ASCII_s = 0x73,
 ASCII_t = 0x74,
 ASCII_u = 0x75,
 ASCII_v = 0x76,
 ASCII_w = 0x77,
 ASCII_x = 0x78,
 ASCII_y = 0x79,

SciTech SNAP, Graphics Architecture 768

EVT_asciiCodesType

 ASCII_z = 0x7A,
 ASCII_leftCurlyBrace = 0x7B,
 ASCII_verticalBar = 0x7C,
 ASCII_rightCurlyBrace = 0x7D,
 ASCII_tilde = 0x7E
 } EVT_asciiCodesType

Prototype In
event.h

Description
Defines the set of ASCII codes reported by the event library functions in the message
field. Use the EVT_asciiCode macro to extract the code from the event structure.

SciTech SNAP, Graphics Architecture 769

EVT_eventJoyAxisType

EVT_eventJoyAxisType

Declaration
typedef enum {
 EVT_JOY_AXIS_X1 = 0x00000001,
 EVT_JOY_AXIS_Y1 = 0x00000002,
 EVT_JOY_AXIS_X2 = 0x00000004,
 EVT_JOY_AXIS_Y2 = 0x00000008,
 EVT_JOY_AXIS_ALL = 0x0000000F
 } EVT_eventJoyAxisType

Prototype In
event.h

Description
Defines the mask for the joystick axes that are present

Members
EVT_JOY_AXIS_X1 Joystick 1, X axis is present
EVT_JOY_AXIS_Y1 Joystick 1, Y axis is present
EVT_JOY_AXIS_X2 Joystick 2, X axis is present
EVT_JOY_AXIS_Y2 Joystick 2, Y axis is present
EVT_JOY_AXIS_ALL Mask for all axes

SciTech SNAP, Graphics Architecture 770

EVT_eventJoyMaskType

EVT_eventJoyMaskType

Declaration
typedef enum {
 EVT_JOY1_BUTTONA = 0x00000001,
 EVT_JOY1_BUTTONB = 0x00000002,
 EVT_JOY2_BUTTONA = 0x00000004,
 EVT_JOY2_BUTTONB = 0x00000008
 } EVT_eventJoyMaskType

Prototype In
event.h

Description
Defines the event message masks for joystick events

Members
EVT_JOY1_BUTTONA Joystick 1, button A is down
EVT_JOY1_BUTTONB Joystick 1, button B is down
EVT_JOY2_BUTTONA Joystick 2, button A is down
EVT_JOY2_BUTTONB Joystick 2, button B is down

SciTech SNAP, Graphics Architecture 771

EVT_eventMaskType

EVT_eventMaskType

Declaration
typedef enum {
 EVT_KEYEVT = (EVT_KEYDOWN | EVT_KEYREPEAT | EVT_KEYUP),
 EVT_MOUSEEVT = (EVT_MOUSEDOWN | EVT_MOUSEAUTO | EVT_MOUSEUP |
EVT_MOUSEMOVE),
 EVT_MOUSECLICK = (EVT_MOUSEDOWN | EVT_MOUSEUP),
 EVT_JOYEVT = (EVT_JOYCLICK | EVT_JOYMOVE),
 EVT_EVERYEVT = 0x7FFFFFFF
 } EVT_eventMaskType

Prototype In
event.h

Description
Defines the event code masks you can use to test for multiple types of events, since the
event codes are mutually exlusive bit fields.

Members
EVT_KEYEVT Mask for any key event
EVT_MOUSEEVT Mask for any mouse event
EVT_MOUSECLICK Mask for any mouse click event
EVT_JOYEVT Mask for any joystick event
EVT_EVERYEVT Mask for any event

SciTech SNAP, Graphics Architecture 772

EVT_eventModMaskType

EVT_eventModMaskType

Declaration
typedef enum {
 EVT_LEFTBUT = 0x00000001,
 EVT_RIGHTBUT = 0x00000002,
 EVT_MIDDLEBUT = 0x00000004,
 EVT_RIGHTSHIFT = 0x00000008,
 EVT_LEFTSHIFT = 0x00000010,
 EVT_RIGHTCTRL = 0x00000020,
 EVT_RIGHTALT = 0x00000040,
 EVT_LEFTCTRL = 0x00000080,
 EVT_LEFTALT = 0x00000100,
 EVT_SHIFTKEY = 0x00000018,
 EVT_CTRLSTATE = 0x000000A0,
 EVT_ALTSTATE = 0x00000140,
 EVT_SCROLLLOCK = 0x00000200,
 EVT_NUMLOCK = 0x00000400,
 EVT_CAPSLOCK = 0x00000800
 } EVT_eventModMaskType

Prototype In
event.h

Description
Defines the event modifier masks. These are the masks used to extract the modifier
information from the modifiers field of the event_t structure. Note that the values in the
modifiers field represent the values of these modifier keys at the time the event
occurred, not the time you decided to process the event.

Members
EVT_LEFTBUT Set if left mouse button was down
EVT_RIGHTBUT Set if right mouse button was down
EVT_MIDDLEBUT Set if the middle button was down
EVT_RIGHTSHIFT Set if right shift was down
EVT_LEFTSHIFT Set if left shift was down
EVT_RIGHTCTRL Set if right ctrl key was down
EVT_RIGHTALT Set if right alt key was down
EVT_LEFTCTRL Set if left ctrl key was down
EVT_LEFTALT Set if left alt key was down
EVT_SHIFTKEY Mask for any shift key down
EVT_CTRLSTATE Set if ctrl key was down
EVT_ALTSTATE Set if alt key was down
EVT_CAPSLOCK Caps lock is active
EVT_NUMLOCK Num lock is active
EVT_SCROLLLOCK Scroll lock is active

SciTech SNAP, Graphics Architecture 773

EVT_eventMouseMaskType

EVT_eventMouseMaskType

Declaration
typedef enum {
 EVT_LEFTBMASK = 0x00000001,
 EVT_RIGHTBMASK = 0x00000002,
 EVT_MIDDLEBMASK = 0x00000004,
 EVT_BOTHBMASK = 0x00000007,
 EVT_ALLBMASK = 0x00000007,
 EVT_DBLCLICK = 0x00010000
 } EVT_eventMouseMaskType

Prototype In
event.h

Description
Defines the event message masks for mouse events

Members
EVT_LEFTBMASK Left button is held down
EVT_RIGHTBMASK Right button is held down
EVT_MIDDLEBMASK Middle button is held down
EVT_BOTHBMASK Both left and right held down together
EVT_ALLBMASK All buttons pressed
EVT_DBLCLICK Set if mouse down event was a double click

SciTech SNAP, Graphics Architecture 774

EVT_eventType

EVT_eventType

Declaration
typedef enum {
 EVT_NULLEVT = 0x00000000,
 EVT_KEYDOWN = 0x00000001,
 EVT_KEYREPEAT = 0x00000002,
 EVT_KEYUP = 0x00000004,
 EVT_MOUSEDOWN = 0x00000008,
 EVT_MOUSEAUTO = 0x00000010,
 EVT_MOUSEUP = 0x00000020,
 EVT_MOUSEMOVE = 0x00000040,
 EVT_JOYCLICK = 0x00000080,
 EVT_JOYMOVE = 0x00000100,
 EVT_USEREVT = 0x00000200
 } EVT_eventType

Prototype In
event.h

Description
Defines the event codes returned in the event_t structures what field. Note that these are
defined as a set of mutually exlusive bit fields, so you can test for multiple event types
using the combined event masks defined in the EVT_eventMaskType enumeration.

Members
EVT_NULLEVT A null event
EVT_KEYDOWN Key down event
EVT_KEYREPEAT Key repeat event
EVT_KEYUP Key up event
EVT_MOUSEDOWN Mouse down event
EVT_MOUSEAUTO Mouse down autorepeat event
EVT_MOUSEUP Mouse up event
EVT_MOUSEMOVE Mouse movement event
EVT_JOYCLICK Joystick button state change event
EVT_JOYMOVE Joystick movement event
EVT_USEREVT First user event

SciTech SNAP, Graphics Architecture 775

EVT_masksType

EVT_masksType

Declaration
typedef enum {
 EVT_ASCIIMASK = 0x00FF,
 EVT_SCANMASK = 0xFF00,
 EVT_COUNTMASK = 0x7FFF0000L
 } EVT_masksType

Prototype In
event.h

Description
Defines the event message masks used to extract information for keyboard events

Members
EVT_ASCIIMASK ASCII code of key pressed
EVT_SCANMASK Scan code of key pressed
EVT_COUNTMASK Count for KEYREPEAT's

SciTech SNAP, Graphics Architecture 776

EVT_scanCodesType

EVT_scanCodesType

Declaration
typedef enum {
 KB_padEnter = 0x60,
 KB_padMinus = 0x4A,
 KB_padPlus = 0x4E,
 KB_padTimes = 0x37,
 KB_padDivide = 0x61,
 KB_padLeft = 0x62,
 KB_padRight = 0x63,
 KB_padUp = 0x64,
 KB_padDown = 0x65,
 KB_padInsert = 0x66,
 KB_padDelete = 0x67,
 KB_padHome = 0x68,
 KB_padEnd = 0x69,
 KB_padPageUp = 0x6A,
 KB_padPageDown = 0x6B,
 KB_padCenter = 0x4C,
 KB_F1 = 0x3B,
 KB_F2 = 0x3C,
 KB_F3 = 0x3D,
 KB_F4 = 0x3E,
 KB_F5 = 0x3F,
 KB_F6 = 0x40,
 KB_F7 = 0x41,
 KB_F8 = 0x42,
 KB_F9 = 0x43,
 KB_F10 = 0x44,
 KB_F11 = 0x57,
 KB_F12 = 0x58,
 KB_left = 0x4B,
 KB_right = 0x4D,
 KB_up = 0x48,
 KB_down = 0x50,
 KB_insert = 0x52,
 KB_delete = 0x53,
 KB_home = 0x47,
 KB_end = 0x4F,
 KB_pageUp = 0x49,
 KB_pageDown = 0x51,
 KB_capsLock = 0x3A,
 KB_numLock = 0x45,
 KB_scrollLock = 0x46,
 KB_leftShift = 0x2A,
 KB_rightShift = 0x36,
 KB_leftCtrl = 0x1D,
 KB_rightCtrl = 0x6C,
 KB_leftAlt = 0x38,
 KB_rightAlt = 0x6D,
 KB_leftWindows = 0x5B,
 KB_rightWindows = 0x5C,
 KB_menu = 0x5D,
 KB_sysReq = 0x54,
 KB_esc = 0x01,
 KB_1 = 0x02,
 KB_2 = 0x03,
 KB_3 = 0x04,
 KB_4 = 0x05,
 KB_5 = 0x06,

SciTech SNAP, Graphics Architecture 777

EVT_scanCodesType

 KB_6 = 0x07,
 KB_7 = 0x08,
 KB_8 = 0x09,
 KB_9 = 0x0A,
 KB_0 = 0x0B,
 KB_minus = 0x0C,
 KB_equals = 0x0D,
 KB_backSlash = 0x2B,
 KB_backspace = 0x0E,
 KB_tab = 0x0F,
 KB_Q = 0x10,
 KB_W = 0x11,
 KB_E = 0x12,
 KB_R = 0x13,
 KB_T = 0x14,
 KB_Y = 0x15,
 KB_U = 0x16,
 KB_I = 0x17,
 KB_O = 0x18,
 KB_P = 0x19,
 KB_leftSquareBrace = 0x1A,
 KB_rightSquareBrace = 0x1B,
 KB_enter = 0x1C,
 KB_A = 0x1E,
 KB_S = 0x1F,
 KB_D = 0x20,
 KB_F = 0x21,
 KB_G = 0x22,
 KB_H = 0x23,
 KB_J = 0x24,
 KB_K = 0x25,
 KB_L = 0x26,
 KB_semicolon = 0x27,
 KB_apostrophe = 0x28,
 KB_Z = 0x2C,
 KB_X = 0x2D,
 KB_C = 0x2E,
 KB_V = 0x2F,
 KB_B = 0x30,
 KB_N = 0x31,
 KB_M = 0x32,
 KB_comma = 0x33,
 KB_period = 0x34,
 KB_divide = 0x35,
 KB_space = 0x39,
 KB_tilde = 0x29
 } EVT_scanCodesType

Prototype In
event.h

Description
Defines the set of scan codes reported by the event library functions in the message field.
Use the EVT_scanCode macro to extract the code from the event structure. Note that the
scan codes reported will be the same across all keyboards (assuming the placement of
keys on a 101 key US keyboard), but the translated ASCII values may be different
depending on the country code pages in use.

SciTech SNAP, Graphics Architecture 778

EVT_scanCodesType

Note: Scan codes in the event library are not really hardware scan codes, but rather virtual scan
codes as generated by a low level keyboard interface driver. All virtual codes begin with
scan code 0x60 and range up from there.

SciTech SNAP, Graphics Architecture 779

LZTimerObject

LZTimerObject

Declaration
typedef struct {
 CPU_largeInteger start;
 CPU_largeInteger end;
 } LZTimerObject

Prototype In
ztimer.h

Description
Defines the structure for an LZTimerObject which contains the starting and ending
timestamps for the timer. By putting the timer information into a structure the Zen
Timer can be used for multiple timers running simultaneously.

Members
start Starting 64-bit timer count
end Ending 64-bit timer count

SciTech SNAP, Graphics Architecture 780

PCIAGPCapability

PCIAGPCapability

Declaration
typedef struct {
 PCICapsHeader h;
 ushort majMin;
 PCIAGPStatus AGPStatus;
 PCIAGPCommand AGPCommand;
 } PCIAGPCapability

Prototype In
pcilib.h

Description
AGP Capability structure

Members
h PCI capabilities header block
majMin Major/minor number
AGPStatus AGP status field
AGPCommand AGP command field

SciTech SNAP, Graphics Architecture 781

PCIAGPCommand

PCIAGPCommand

Declaration
typedef struct {
 uint rate:4;
 uint fastWriteEnable:1;
 uint fourGBEnable:1;
 uint rsvd1:2;
 uint AGPEnable:1;
 uint SBAEnable:1;
 uint rsvd2:14;
 uint requestQueueDepth:8;
 } PCIAGPCommand

Prototype In
pcilib.h

Description
Structure defining the PCI AGP command register contents

Members
rate Enable AGP rate (1-8x)
fastWriteEnable Enable AGP FastWrite
fourGBEnable Enable 4GB addressing
rsvd1 Reserved; not used
AGPEnable Enable AGP bus
SBAEnable Enable side band addressing
rsvd2 Reserved; not used
requestQueueDepth Request queue depth

SciTech SNAP, Graphics Architecture 782

PCIAGPStatus

PCIAGPStatus

Declaration
typedef struct {
 uint rate:4;
 uint fastWrite:1;
 uint fourGB:1;
 uint rsvd1:3;
 uint sideBandAddressing:1;
 uint rsvd2:14;
 uint requestQueueDepthMaximum:8;
 } PCIAGPStatus

Prototype In
pcilib.h

Description
Structure defining the PCI AGP status register contents

Members
rate Supported AGP rate (1-8x)
fastWrite AGP FastWrite supported
fourGB 4GB addressing supported
rsvd1 Reserved; not used
sideBandAddressing Side band addressing supported
rsvd2 Reserved; not used
requestQueueDepthMaximum Maximum request queue depth

SciTech SNAP, Graphics Architecture 783

PCIAccessRegFlags

PCIAccessRegFlags

Declaration
typedef enum {
 PCI_READ_BYTE = 0,
 PCI_READ_WORD = 1,
 PCI_READ_DWORD = 2,
 PCI_WRITE_BYTE = 3,
 PCI_WRITE_WORD = 4,
 PCI_WRITE_DWORD = 5
 } PCIAccessRegFlags

Prototype In
pcilib.h

Description
Function codes to pass to PCI_access . The names of the flags are self explanatory. Reg

SciTech SNAP, Graphics Architecture 784

PCICapsHeader

PCICapsHeader

Declaration
typedef struct {
 uchar capsID;
 uchar next;
 } PCICapsHeader

Prototype In
pcilib.h

Description
PCI Capability header structure. All PCI capabilities have this header field to describe
the capability type.

Members
capsID Used to identify the type of the structure (PCICapsType).
next Next is the offset in PCI configuration space (0x40-0xFC) of the

next capability structure in the list, or 0x00 if there are no more
entries.

SciTech SNAP, Graphics Architecture 785

PCICapsType

PCICapsType

Declaration
typedef enum {
 PCI_capsPowerManagement = 0x01,
 PCI_capsAGP = 0x02,
 PCI_capsMSI = 0x05
 } PCICapsType

Prototype In
pcilib.h

Description
Defines for the PCI capability IDs, which define what extended PCI capabilities a device
supports. The names of the flags are self explanatory.

SciTech SNAP, Graphics Architecture 786

PCIClassTypes

PCIClassTypes

Declaration
typedef enum {
 PCI_BRIDGE_CLASS = 0x06,
 PCI_HOST_BRIDGE_SUBCLASS = 0x00,
 PCI_EARLY_VGA_CLASS = 0x00,
 PCI_EARLY_VGA_SUBCLASS = 0x01,
 PCI_DISPLAY_CLASS = 0x03,
 PCI_DISPLAY_VGA_SUBCLASS = 0x00,
 PCI_DISPLAY_XGA_SUBCLASS = 0x01,
 PCI_DISPLAY_OTHER_SUBCLASS = 0x80,
 PCI_MM_CLASS = 0x04,
 PCI_AUDIO_SUBCLASS = 0x01
 } PCIClassTypes

Prototype In
pcilib.h

Description
Defines for the known PCI class device types and sub class device types. The names of
the types are self explanatory.

SciTech SNAP, Graphics Architecture 787

PCICommandFlags

PCICommandFlags

Declaration
typedef enum {
 PCI_enableIOSpace = 0x0001,
 PCI_enableMemorySpace = 0x0002,
 PCI_enableBusMaster = 0x0004,
 PCI_enableSpecialCycles = 0x0008,
 PCI_enableWriteAndInvalidate = 0x0010,
 PCI_enableVGACompatiblePalette = 0x0020,
 PCI_enableParity = 0x0040,
 PCI_enableWaitCycle = 0x0080,
 PCI_enableSerr = 0x0100,
 PCI_enableFastBackToBack = 0x0200
 } PCICommandFlags

Prototype In
pcilib.h

Description
Defines for the PCIDeviceInfo.Command field, which control which features of the device
are enabled or disabled. A 1 in the field means that the feature is enabled, 0 means it is
disabled. The names of the flags are self explanatory.

SciTech SNAP, Graphics Architecture 788

PCIDeviceInfo

PCIDeviceInfo

Declaration
typedef struct {
 ulong dwSize;
 PCIslot slot;
 ulong mech1;
 ushort VendorID;
 ushort DeviceID;
 ushort Command;
 ushort Status;
 uchar RevID;
 uchar Interface;
 uchar SubClass;
 uchar BaseClass;
 uchar CacheLineSize;
 uchar LatencyTimer;
 uchar HeaderType;
 uchar BIST;
 union {
 PCIType0Info type0;
 PCIType1Info type1;
 PCIType2Info type2;
 } u;
 } PCIDeviceInfo

Prototype In
pcilib.h

Description
Structure defining the PCI configuration space information for a single PCI device on the
PCI bus. We enumerate all this information for all PCI devices on the bus.

Note: The dwSize member is intended for future compatibility, and should be set to the size of
the structure as defined in this header file. Future drivers will be compatible with older
software by examiming this value.

Members
dwSize Set to size of structure in bytes
slot PCI slot identifier for this device
mech1 True if we enumerated this bus using PCI access

mechanism 1
VendorID Unique PCI device Vendor ID value
DeviceID Unique PCI device Device ID value
Command Device command register used to control the device

(PCICommandFlags)
Status Device status register flags (PCIStatusFlags)
RevID Device revision ID value
Interface Device interface type value
SubClass Device Sub Class field
BaseClass Device Base Class field
CacheLineSize Cache line size for the device
LatencyTimer Latency timer value

SciTech SNAP, Graphics Architecture 789

PCIDeviceInfo

HeaderType Header type field, defining type of info
(PCIHeaderT) ypeFlags

BIST BIST value
type0 Union to access PCI type 0 specific information
type1 Union to access PCI type 1 specific information
type2 Union to access PCI type 2 specific information

SciTech SNAP, Graphics Architecture 790

PCIHeaderTypeFlags

PCIHeaderTypeFlags

Declaration
typedef enum {
 PCI_deviceType = 0x00,
 PCI_bridgeType = 0x01,
 PCI_cardBusBridgeType = 0x02,
 PCI_multiFunctionType = 0x80
 } PCIHeaderTypeFlags

Prototype In
pcilib.h

Description
Defines for the PCIDeviceInfo.HeaderType field. The names of the flags are self
explanatory.

SciTech SNAP, Graphics Architecture 791

PCIStatusFlags

PCIStatusFlags

Declaration
typedef enum {
 PCI_statusCapabilitiesList = 0x0010,
 PCI_status66MhzCapable = 0x0020,
 PCI_statusUDFSupported = 0x0040,
 PCI_statusFastBackToBack = 0x0080,
 PCI_statusDataParityDetected = 0x0100,
 PCI_statusDevSel = 0x0600,
 PCI_statusSignaledTargetAbort = 0x0800,
 PCI_statusRecievedTargetAbort = 0x1000,
 PCI_statusRecievedMasterAbort = 0x2000,
 PCI_statusSignaledSystemError = 0x4000,
 PCI_statusDetectedParityError = 0x8000
 } PCIStatusFlags

Prototype In
pcilib.h

Description
Defines for the PCIDeviceInfo.Status field, which control which features of the device are
supported. A 1 in the field means that the feature is supported, 0 means it is not
supported. The names of the flags are self explanatory.

SciTech SNAP, Graphics Architecture 792

PCIType0Info

PCIType0Info

Declaration
typedef struct {
 ulong BaseAddress10;
 ulong BaseAddress14;
 ulong BaseAddress18;
 ulong BaseAddress1C;
 ulong BaseAddress20;
 ulong BaseAddress24;
 ulong CardbusCISPointer;
 ushort SubSystemVendorID;
 ushort SubSystemID;
 ulong ROMBaseAddress;
 uchar CapabilitiesPointer;
 uchar reserved1;
 uchar reserved2;
 uchar reserved3;
 ulong reserved4;
 uchar InterruptLine;
 uchar InterruptPin;
 uchar MinimumGrant;
 uchar MaximumLatency;
 ulong BaseAddress10Len;
 ulong BaseAddress14Len;
 ulong BaseAddress18Len;
 ulong BaseAddress1CLen;
 ulong BaseAddress20Len;
 ulong BaseAddress24Len;
 ulong ROMBaseAddressLen;
 } PCIType0Info

Prototype In
pcilib.h

Description
Structure defining the regular (type 0) PCI configuration register layout. We use this in
the PCIDeviceInfo union so we can describe all types of PCI configuration spaces with a
single structure.

Note: The PCI base address length values are not actually in the PCI configuration space, but
are calculated when the configuration space is enumerated as they are useful values to
know.

Members
BaseAddress10 Base address register (BAR) 10h
BaseAddress14 Base address register (BAR) 14h
BaseAddress18 Base address register (BAR) 18h
BaseAddress1C Base address register (BAR) 1Ch
BaseAddress20 Base address register (BAR) 20h
BaseAddress24 Base address register (BAR) 24h
CardbusCISPointer Pointer to CardBus Information Structure in config

space
SubSystemVendorID Sub System Vendor ID for this device type

SciTech SNAP, Graphics Architecture 793

PCIType0Info

SubSystemID Sub System ID for this device type
ROMBaseAddress Base address for ROM on device (if any)
CapabilitiesPointer Pointer to PCI capabilities list
reserved1 Reserved: not used for this device type
reserved2 Reserved: not used for this device type
reserved3 Reserved: not used for this device type
reserved4 Reserved: not used for this device type
InterruptLine Interrupt line assigned to this device
InterruptPin Interrupt pin assigned to this device
MinimumGrant Minimum interrupt grant assigned to this device
MaximumLatency Maximum interrupt latency assigned to this device
BaseAddress10Len Length of BAR 10 (calculated value)
BaseAddress14Len Length of BAR 14 (calculated value)
BaseAddress18Len Length of BAR 18 (calculated value)
BaseAddress1CLen Length of BAR 1C (calculated value)
BaseAddress20Len Length of BAR 20 (calculated value)
BaseAddress24Len Length of BAR 24 (calculated value)
ROMBaseAddressLen Length of ROM (calculated value)

SciTech SNAP, Graphics Architecture 794

PCIType1Info

PCIType1Info

Declaration
typedef struct {
 ulong BaseAddress10;
 ulong BaseAddress14;
 uchar PrimaryBusNumber;
 uchar SecondayBusNumber;
 uchar SubordinateBusNumber;
 uchar SecondaryLatencyTimer;
 uchar IOBase;
 uchar IOLimit;
 ushort SecondaryStatus;
 ushort MemoryBase;
 ushort MemoryLimit;
 ushort PrefetchableMemoryBase;
 ushort PrefetchableMemoryLimit;
 ulong PrefetchableBaseHi;
 ulong PrefetchableLimitHi;
 ushort IOBaseHi;
 ushort IOLimitHi;
 uchar CapabilitiesPointer;
 uchar reserved1;
 uchar reserved2;
 uchar reserved3;
 ulong ROMBaseAddress;
 uchar InterruptLine;
 uchar InterruptPin;
 ushort BridgeControl;
 } PCIType1Info

Prototype In
pcilib.h

Description
Structure defining PCI to PCI bridge (type 1) PCI configuration register layout. We use
this in the PCIDevi union so we can describe all types of PCI configuration spaces
with a single structure.

ceInfo

Members
BaseAddress10 Base address register (BAR) 10h
BaseAddress14 Base address register (BAR) 14h
PrimaryBusNumber Primary bus number this bridge lives on
SecondayBusNumber Secondary bus number this bridge controls
SubordinateBusNumber Subordinate bus number for this bridge
SecondaryLatencyTimer Secondary latency timer
IOBase I/O base address for bridge control registers
IOLimit I/O limit for bridge control registers
SecondaryStatus Secondary status
MemoryBase Memory mapped base address for bridge

control registers
MemoryLimit Memory mapped limit for bridge control

registers
PrefetchableMemoryBase Base of pre-fetchable memory on bus

SciTech SNAP, Graphics Architecture 795

PCIType1Info

PrefetchableMemoryLimit Length of pre-fetchable memory on bus
PrefetchableBaseHi High portion of prefetchable base value
PrefetchableLimitHi High portion of prefetchable limit value
IOBaseHi High value of I/O base address
IOLimitHi High value of I/O limit
CapabilitiesPointer Pointer to PCI bridge capabilities list
reserved1 Reserved: not used for this device type
reserved2 Reserved: not used for this device type
reserved3 Reserved: not used for this device type
ROMBaseAddress Address if ROM for bridge (if any)
InterruptLine Interrupt line assigned to this device
InterruptPin Interrupt pin assigned to this device
BridgeControl Bridge control register

SciTech SNAP, Graphics Architecture 796

PCIType2Info

PCIType2Info

Declaration
typedef struct {
 ulong SocketRegistersBaseAddress;
 uchar CapabilitiesPointer;
 uchar reserved1;
 ushort SecondaryStatus;
 uchar PrimaryBus;
 uchar SecondaryBus;
 uchar SubordinateBus;
 uchar SecondaryLatency;
 struct {
 ulong Base;
 ulong Limit;
 } Range[4];
 uchar InterruptLine;
 uchar InterruptPin;
 ushort BridgeControl;
 } PCIType2Info

Prototype In
pcilib.h

Description
Structure defining PCI to CardBus bridge (type 2) PCI configuration register layout. We
use this in the PCIDeviceInfo union so we can describe all types of PCI configuration
spaces with a single structure.

Members
SocketRegistersBaseAddress Base address for control registers
CapabilitiesPointer CardBus bridge capabilities pointer
reserved1 Reserved: not used for this device type
SecondaryStatus Secondary status
PrimaryBus Primary bus number bridge is connected to
SecondaryBus Secondary bus bridge controls
SubordinateBus Subordinate bus for bridge
SecondaryLatency Secondary latency
Range Array of four base/limit ranges
InterruptLine Interrupt line assigned to this device
InterruptPin Interrupt pin assigned to this device
BridgeControl Bridge control register

SciTech SNAP, Graphics Architecture 797

PCIslot

PCIslot

Declaration
typedef union {
 struct {
 uint Zero:2;
 uint Register:6;
 uint Function:3;
 uint Device:5;
 uint Bus:8;
 uint Reserved:7;
 uint Enable:1;
 } p;
 ulong i;
 } PCIslot

Prototype In
pcilib.h

Description
Structure defining a PCI slot identifier.

Note: We define all bitfield's as uint's, specifically so that the IBM Visual Age C++ compiler
does not complain. We need them to be 32-bits wide, and this is the width of an unsigned
integer, but we can't use a ulong to make this explicit or we get errors.

Members
Zero Always set to zero
Register Field containing the PCI register index
Function Field containing the PCI function index
Device Field containing the PCI device index
Bus Field containing the PCI bus index
Reserved Reserved (always 0)
Enable Enable bit to enable this slot
i Union field to access as a 32-bit integer

SciTech SNAP, Graphics Architecture 798

PE_errorCodes

PE_errorCodes

Declaration
typedef enum {
 PE_ok,
 PE_fileNotFound,
 PE_outOfMemory,
 PE_invalidDLLImage,
 PE_unableToInitLibC,
 PE_unknownImageFormat
 } PE_errorCodes

Prototype In
drvlib/peloader.h

Description
Defines the error codes returned by the library

Members
PE_ok No error
PE_fileNotFound DLL file not found
PE_outOfMemory Out of memory loading DLL
PE_invalidDLLImage DLL image is invalid or corrupted
PE_unableToInitLibC Unable to initialise the C runtime library
PE_unknownImageFormat DLL image is in a format that is not supported

SciTech SNAP, Graphics Architecture 799

PMBYTEREGS

PMBYTEREGS

Declaration
typedef struct {
 uchar al;
 uchar ah; ushort ax_hi;
 uchar bl;
 uchar bh; ushort bx_hi;
 uchar cl;
 uchar ch; ushort cx_hi;
 uchar dl;
 uchar dh; ushort dx_hi;
 } PMBYTEREGS

Prototype In
pmapi.h

Description
Structure describing the 8-bit x86 CPU registers

Members
al Value of the AL register
ah Value of the AH register
bl Value of the BL register
bh Value of the BH register
cl Value of the CL register
ch Value of the CH register
dl Value of the DL register
dh Value of the DH register

SciTech SNAP, Graphics Architecture 800

PMDWORDREGS

PMDWORDREGS

Declaration
typedef struct {
 ulong eax;
 ulong ebx;
 ulong ecx;
 ulong edx;
 ulong esi;
 ulong edi;
 ulong cflag;
 } PMDWORDREGS

Prototype In
pmapi.h

Description
Structure describing the 32-bit extended x86 CPU registers

Members
eax Value of the EAX register
ebx Value of the EBX register
ecx Value of the ECX register
edx Value of the EDX register
esi Value of the ESI register
edi Value of the EDI register
cflag Value of the carry flag

SciTech SNAP, Graphics Architecture 801

PMEnableWriteCombineErrors

PMEnableWriteCombineErrors

Declaration
typedef enum {
 PM_MTRR_ERR_OK = 0,
 PM_MTRR_NOT_SUPPORTED = -1,
 PM_MTRR_ERR_PARAMS = -2,
 PM_MTRR_ERR_NOT_4KB_ALIGNED = -3,
 PM_MTRR_ERR_BELOW_1MB = -4,
 PM_MTRR_ERR_NOT_ALIGNED = -5,
 PM_MTRR_ERR_OVERLAP = -6,
 PM_MTRR_ERR_TYPE_MISMATCH = -7,
 PM_MTRR_ERR_NONE_FREE = -8,
 PM_MTRR_ERR_NOWRCOMB = -9,
 PM_MTRR_ERR_NO_OS_SUPPORT = -10
 } PMEnableWriteCombineErrors

Prototype In
pmapi.h

Description
Error codes returned by PM_enableW . Error code names are self explanatory. riteCombine

SciTech SNAP, Graphics Architecture 802

PMEnableWriteCombineFlags

PMEnableWriteCombineFlags

Declaration
typedef enum {
 PM_MTRR_UNCACHABLE = 0,
 PM_MTRR_WRCOMB = 1,
 PM_MTRR_WRTHROUGH = 4,
 PM_MTRR_WRPROT = 5,
 PM_MTRR_WRBACK = 6,
 PM_MTRR_MAX = 6
 } PMEnableWriteCombineFlags

Prototype In
pmapi.h

Description
Flags passed to PM_enableWriteCombine

Members
PM_MTRR_UNCACHABLE Make region uncacheable
PM_MTRR_WRCOMB Make region write combineable
PM_MTRR_WRTHROUGH Make region write through cached
PM_MTRR_WRPROT Make region write protected
PM_MTRR_WRBACK Make region write back cached
PM_MTRR_MAX Maximum value allowed

SciTech SNAP, Graphics Architecture 803

PMFileFlagsType

PMFileFlagsType

Declaration
typedef enum {
 PM_FILE_NORMAL = 0x00000000,
 PM_FILE_READONLY = 0x00000001,
 PM_FILE_DIRECTORY = 0x00000002,
 PM_FILE_ARCHIVE = 0x00000004,
 PM_FILE_HIDDEN = 0x00000008,
 PM_FILE_SYSTEM = 0x00000010
 } PMFileFlagsType

Prototype In
pmapi.h

Description
Flags stored in the PM structure, and also values passed to PM_s to
change the file attributes. Flag names are self explanatory.

_findData etFileAttr

SciTech SNAP, Graphics Architecture 804

PMREGS

PMREGS

Declaration
typedef union {
 PMDWORDREGS e;
 PMWORDREGS x;
 PMBYTEREGS h;
 } PMREGS

Prototype In
pmapi.h

Description
Structure describing all the x86 CPU registers

Members
e Member to access registers as 32-bit values
x Member to access registers as 16-bit values
h Member to access registers as 8-bit values

SciTech SNAP, Graphics Architecture 805

PMSREGS

PMSREGS

Declaration
typedef struct {
 ushort es;
 ushort cs;
 ushort ss;
 ushort ds;
 ushort fs;
 ushort gs;
 } PMSREGS

Prototype In
pmapi.h

Description
Structure describing all the x86 segment registers

Members
es ES segment register
cs CS segment register
ss SS segment register
ds DS segment register
fs FS segment register
gs GS segment register

SciTech SNAP, Graphics Architecture 806

PMSplitPathFlags

PMSplitPathFlags

Declaration
typedef enum {
 PM_HAS_WILDCARDS = 0x01,
 PM_HAS_EXTENSION = 0x02,
 PM_HAS_FILENAME = 0x04,
 PM_HAS_DIRECTORY = 0x08,
 PM_HAS_DRIVE = 0x10
 } PMSplitPathFlags

Prototype In
pmapi.h

Description
Flags returned by the P function. Flag names are self explanatory. M_splitpath

SciTech SNAP, Graphics Architecture 807

PMWORDREGS

PMWORDREGS

Declaration
typedef struct {
 ushort ax,ax_hi;
 ushort bx,bx_hi;
 ushort cx,cx_hi;
 ushort dx,dx_hi;
 ushort si,si_hi;
 ushort di,di_hi;
 ushort cflag,cflag_hi;
 } PMWORDREGS

Prototype In
pmapi.h

Description
Structure describing the 16-bit x86 CPU registers

Members
ax Value of the AX register
bx Value of the BX register
cx Value of the CX register
dx Value of the DX register
si Value of the SI register
di Value of the DI register
cflag Value of the carry flag

SciTech SNAP, Graphics Architecture 808

PM_HWND

PM_HWND

Declaration
typedef void *PM_HWND

Prototype In
pmapi.h

Description
Fundamental type definition for a window handle. Note that the portable version of this
define is simply to make it a void pointer, but internally it will be represented as a
pointer to an internal operating system window handle.

SciTech SNAP, Graphics Architecture 809

PM_IRQHandle

PM_IRQHandle

Declaration
typedef void *PM_IRQHandle

Prototype In
pmapi.h

Description
Type definition for a Hardware IRQ handle used to save and restore the hardware IRQ
handler.

SciTech SNAP, Graphics Architecture 810

PM_MODULE

PM_MODULE

Declaration
typedef void *PM_MODULE

Prototype In
pmapi.h

Description
Fundamental type definition for a module handle. Note that the portable version of this
define is simply to make it a void pointer, but internally it will be represented as a
pointer to an internal operating system module handle.

SciTech SNAP, Graphics Architecture 811

PM_agpMemoryType

PM_agpMemoryType

Declaration
typedef enum {
 PM_agpUncached,
 PM_agpWriteCombine,
 PM_agpIntelDCACHE
 } PM_agpMemoryType

Prototype In
pmapi.h

Description
This enumeration defines the type values passed to the PM_agpReserve function,
to define how the physical memory mapping should be handled.

Physical

The PM_agpUncached type indicates that the memory should be allocated as uncached
memory.

The PM_agpWriteCombine type indicates that write combining should be enabled for
physical memory mapping. This is used for framebuffer write combing and speeds up
direct framebuffer writes to the memory.

The PM_agpIntelDCACHE type indicates that memory should come from the Intel i81x
Display Cache (or DCACHE) memory pool. This flag is specific to the Intel i810 and i815
controllers, and should not be passed for any other controller type.

Members
PM_agpUncached Indicates that the memory should be uncached
PM_agpWriteCombine Indicates that the memory should be write

combined
PM_agpIntelDCACHE Indicates that the memory should come from

DCACHE pool

SciTech SNAP, Graphics Architecture 812

PM_enumWriteCombine_t

PM_enumWriteCombine_t

Declaration
typedef void (PMAPIP PM_enumWriteCombine_t)(
 ulong base,
 ulong length,
 uint type)

Prototype In
pmapi.h

Description
Type definition for enum write combined callback function

SciTech SNAP, Graphics Architecture 813

PM_fatalCleanupHandler

PM_fatalCleanupHandler

Declaration
typedef void (PMAPIP PM_fatalCleanupHandler)(void)

Prototype In
pmapi.h

Description
Type definition for the fatal cleanup handler

SciTech SNAP, Graphics Architecture 814

PM_findData

PM_findData

Declaration
typedef struct {
 ulong dwSize;
 ulong attrib;
 ulong sizeLo;
 ulong sizeHi;
 char name[PM_MAX_PATH];
 } PM_findData

Prototype In
pmapi.h

Description
Structure for generic directory traversal and management. Also the same values are
passed to PM_setFileAttr to change the file attributes.

Note: The dwSize member is intended for future compatibility, and should be set to the size of
the structure as defined in this header file. Future drivers will be compatible with older
software by examiming this value.

Members
dwSize Set to size of structure in bytes
attrib Attributes for the file
sizeLo Size of the file (low 32-bits)
sizeHi Size of the file (high 32-bits)
name Name of the file

SciTech SNAP, Graphics Architecture 815

PM_intHandler

PM_intHandler

Declaration
typedef void (PMAPIP PM_intHandler)(void)

Prototype In
pmapi.h

Description
Type definition for a C based interrupt handler

SciTech SNAP, Graphics Architecture 816

PM_irqHandler

PM_irqHandler

Declaration
typedef ibool (PMAPIP PM_irqHandler)(
 void *context)

Prototype In
pmapi.h

Description
Type definition for a C based hardware interrupt handler

SciTech SNAP, Graphics Architecture 817

PM_lockHandle

PM_lockHandle

Declaration
typedef struct {
 ulong h[3];
 } PM_lockHandle

Prototype In
pmapi.h

Description
Type definition for the lock handle used for locking linear memory

Members
h Internal lock handle details

SciTech SNAP, Graphics Architecture 818

PM_physAddr

PM_physAddr

Declaration
typedef unsigned long PM_physAddr

Prototype In
pmapi.h

Description
Fundamental type definition for a physical memory address

SciTech SNAP, Graphics Architecture 819

PM_suspendAppCodesType

PM_suspendAppCodesType

Declaration
typedef enum {
 PM_SUSPEND_APP = 0,
 PM_NO_SUSPEND_APP = 1
 } PM_suspendAppCodesType

Prototype In
pmapi.h

Description
Defines the return codes that the application can return from the suspend application
callback registered with the PM library. The default value to be returned is
PM_SUSPEND_APP and this will cause the application execution to be suspended until
the application is re-activated again by the user. During this time the application will
exist on the task bar under Windows 9x and Windows NT/2000/XP in minimised form.

PM_NO_SUSPEND_APP can be used to tell the PM library to switch back to the
Windows desktop, but not to suspend the applications execution. This must be used
with care as the suspend application callback is then responsible for setting a flag in the
application that will stop the application from doing any rendering directly to the
framebuffer while the application is minimised on the task bar (since the application no
lonter owns the screen!). This return value is most useful for networked games that need
to maintain network connectivity while the user has temporarily switched back to the
Windows desktop. Hence you can ensure that you main loop continues to run, including
networking and AI code, but no drawing occurs to the screen.

Note: The PM library ensures that your application will never be switched away from outside of
a message processing loop. Hence as long as you do not process messages inside your
drawing loops, you will never lose the active focus (and your surfaces) while drawing, but
only during event processing. The exception to this is if the user hits Ctrl-Alt-Del under
Windows NT/2000/XP which will always cause a switch away from the application
immediately and force the surfaces to be lost.

Members
PM_SUSPEND_APP Suspend application execution until restored
PM_NO_SUSPEND_APP Don't suspend execution, but allow switch

SciTech SNAP, Graphics Architecture 820

PM_suspendAppFlagsType

PM_suspendAppFlagsType

Declaration
typedef enum {
 PM_DEACTIVATE = 0x0001,
 PM_REACTIVATE = 0x0002
 } PM_suspendAppFlagsType

Prototype In
pmapi.h

Description
Defines the suspend application callback flags, passed to the suspend application
callback registered with the PM library. This callback is called when the user presses one
of the system key sequences indicating that they wish to change the active application.
The PM library will catch these events and if you have registered a callback, will call the
callback to save the state of the application so that it can be properly restored when the
user switches back to your application.

Note: Your application suspend callback may get called twice with the PM_DEACTIVATE flag
in order to test whether the switch should occur.

Note: When your callback is called with the PM_DEACTIVATE flag, you cannot assume that
you have access to the display memory surfaces as they may have been lost by the time
your callback has been called.

Members
PM_DEACTIVATE Application losing active focus
PM_REACTIVATE Application regaining active focus

SciTech SNAP, Graphics Architecture 821

PM_suspendApp_cb

PM_suspendApp_cb

Declaration
typedef int (PMAPIP PM_suspendApp_cb)(
 int flags)

Prototype In
pmapi.h

Description
Type definition for suspend application callback function

SciTech SNAP, Graphics Architecture 822

PM_time

PM_time

Declaration
typedef struct {
 short sec;
 short min;
 short hour;
 short day;
 short mon;
 short year;
 } PM_time

Prototype In
pmapi.h

Description
Structure passed to the PM_setFileTi functions me

Members
sec Seconds
min Minutes
hour Hour (0--23)
day Day of month (1--31)
mon Month (0--11)
year Year (calendar year minus 1900)

SciTech SNAP, Graphics Architecture 823

RMREGS

RMREGS

Declaration
typedef PMREGS RMREGS

Prototype In
pmapi.h

Description
Same as PM . Please see PMRE for more information. REGS GS

SciTech SNAP, Graphics Architecture 824

RMSREGS

RMSREGS

Declaration
typedef PMSREGS RMSREGS

Prototype In
pmapi.h

Description
Same as PM . Please see PMSREGS for more information. SREGS

SciTech SNAP, Graphics Architecture 825

__codePtr

__codePtr

Declaration
typedef void (*__codePtr)()

Prototype In
pmapi.h

Description
Type definition for a generic code pointer

SciTech SNAP, Graphics Architecture 826

codepage_entry_t

codepage_entry_t

Declaration
typedef struct {
 uchar scanCode;
 uchar asciiCode;
 } codepage_entry_t

Prototype In
event.h

Description
Structure describing an entry in the code page table. A table of translation codes for scan
codes to ASCII codes is provided in this table to be used by the keyboard event libraries.
On some OS'es the keyboard translation is handled by the OS, but for DOS and
embedded systems you must register a different code page translation table if you want
to support keyboards other than the US English keyboard (the default).

Note: Entries in code page tables must be in ascending order for the scan codes as we do a
binary search on the tables for the ASCII code equivalents.

Members
scanCode Scan code to translate (really the virtual scan code).
asciiCode ASCII code for this scan code.

SciTech SNAP, Graphics Architecture 827

codepage_t

codepage_t

Declaration
typedef struct {
 char name[20];
 codepage_entry_t *normal;
 int normalLen;
 codepage_entry_t *caps;
 int capsLen;
 codepage_entry_t *shift;
 int shiftLen;
 codepage_entry_t *shiftCaps;
 int shiftCapsLen;
 codepage_entry_t *ctrl;
 int ctrlLen;
 codepage_entry_t *numPad;
 int numPadLen;
 } codepage_t

Prototype In
event.h

Description
Structure describing a complete code page translation table. The table contains
translation tables for normal keys, shifted keys and ctrl keys. The Ctrl key always has
precedence over the shift table, and the shift table is used when the shift key is down or
the CAPSLOCK key is down.

SciTech SNAP, Graphics Architecture 828

event_t

event_t

Declaration
typedef struct {
 ulong which;
 ulong what;
 ulong when;
 int where_x;
 int where_y;
 int relative_x;
 int relative_y;
 ulong message;
 ulong modifiers;
 int next;
 int prev;
 } event_t

Prototype In
event.h

Description
Structure describing the information contained in an event extracted from the event
queue.

Members
which Window identifier for message for use by high level

window manager code (i.e. MegaVision GUI or Windows
API).

what Type of event that occurred. Will be one of the values
defined by the EVT_eventType enumeration.

when Time that the event occurred in milliseconds since startup
where_x X coordinate of the mouse cursor location at the time of the

event (in screen coordinates). For joystick events this
represents the position of the first joystick X axis.

where_y Y coordinate of the mouse cursor location at the time of the
event (in screen coordinates). For joystick events this
represents the position of the first joystick Y axis.

relative_x Relative movement of the mouse cursor in the X direction
(in units of mickeys, or 1/200th of an inch). For joystick
events this represents the position of the second joystick X
axis.

relative_y Relative movement of the mouse cursor in the Y direction
(in units of mickeys, or 1/200th of an inch). For joystick
events this represents the position of the second joystick Y
axis.

message Event specific message for the event. For use events this can
be any user specific information. For keyboard events this
contains the ASCII code in bits 0-7, the keyboard scan code
in bits 8-15 and the character repeat count in bits 16-30. You
can use the EVT_asciiCode, EVT_scanCode and

SciTech SNAP, Graphics Architecture 829

event_t

EVT_repeatCount macros to extract this information from the
message field. For mouse events this contains information
about which button was pressed, and will be a combination
of the flags defined by the EVT_eventMouseMaskType
enumeration. For joystick events, this conatins information
about which buttons were pressed, and will be a
combination of the flags defined by the

 enumeration. EVT_eventJoyMaskType
modifiers Contains additional information about the state of the

keyboard shift modifiers (Ctrl, Alt and Shift keys) when the
event occurred. For mouse events it will also contain the
state of the mouse buttons. Will be a combination of the
values defined by the EVT_eventModMaskType enumeration.

next Internal use; do not use.
prev Internal use; do not use.

SciTech SNAP, Graphics Architecture 830

Index

BitBltSys. See GA_2DRenderFuncs::BitBltSys _ BuildTranslateVector. See
GA_2DStateFuncs::BuildTranslateVector __codePtr, 822

C A
ClearRegion. See GA_regionFuncs::ClearRegion AlignLinearBuffer. See

GA_initFuncs::AlignLinearBuffer ClipEllipse. See GA_2DRenderFuncs::ClipEllipse
ClipMonoImageLSBBM. See

GA_2DRenderFuncs::ClipMonoImageLSBBM
AllocBuffer. See GA_bufferFuncs::AllocBuffer
AllocVideoBuffer. See

GA_videoFuncs::AllocVideoBuffer ClipMonoImageLSBLin. See
GA_2DRenderFuncs::ClipMonoImageLSBLin

ClipMonoImageLSBSys. See
GA_2DRenderFuncs::ClipMonoImageLSBSys B

ClipMonoImageMSBBM. See
GA_2DRenderFuncs::ClipMonoImageMSBBM BeginAccess. See GA_cursorFuncs::BeginAccess

BitBlt. See GA_2DRenderFuncs::BitBlt
ClipMonoImageMSBLin. See

GA_2DRenderFuncs::ClipMonoImageMSBLin BitBltBM. See GA_2DRenderFuncs::BitBltBM
BitBltBuf. See GA_bufferFuncs::BitBltBuf

ClipMonoImageMSBSys. See
GA_2DRenderFuncs::ClipMonoImageMSBSys BitBltColorPatt. See

GA_2DRenderFuncs::BitBltColorPatt
codepage_entry_t, 823 BitBltColorPattBM. See

GA_2DRenderFuncs::BitBltColorPattBM codepage_t, 824
CopyIntoRegion. See

GA_regionFuncs::CopyIntoRegion BitBltColorPattBuf. See
GA_bufferFuncs::BitBltColorPattBuf CopyRegion. See GA_regionFuncs::CopyRegion BitBltColorPattLin. See
GA_2DRenderFuncs::BitBltColorPattLin CPU_getProcessorName, 589, 590, 591, 592, 593,

594, 595, 596 BitBltColorPattSys. See
GA_2DRenderFuncs::BitBltColorPattSys CPU_getProcessorSpeed, 590, 591, 592, 593, 594,

595, 596 BitBltFx. See GA_2DRenderFuncs::BitBltFx CPU_getProcessorSpeedInHZ, 591 BitBltFxBM. See GA_2DRenderFuncs::BitBltFxBM CPU_getProcessorType, 589, 590, 591, 592, 593, 594,
595, 596, 761 BitBltFxBuf. See GA_bufferFuncs::BitBltFxBuf

BitBltFxLin. See GA_2DRenderFuncs::BitBltFxLin CPU_have3DNow, 593, 594, 595, 596 BitBltFxSys. See GA_2DRenderFuncs::BitBltFxSys CPU_haveMMX, 589, 590, 591, 592, 593, 594, 595,
596 BitBltFxTest. See GA_2DRenderFuncs::BitBltFxTest

BitBltLin. See GA_2DRenderFuncs::BitBltLin CPU_haveRDTSC, 595 BitBltPatt. See GA_2DRenderFuncs::BitBltPatt CPU_haveSSE, 593, 594, 596 BitBltPattBM. See
GA_2DRenderFuncs::BitBltPattBM CPU_largeInteger, 760

CPU_processorType, 761 BitBltPattBuf. See GA_bufferFuncs::BitBltPattBuf
CreateClipper. See GA_clipperFuncs::CreateClipper BitBltPattLin. See GA_2DRenderFuncs::BitBltPattLin

BitBltPattSys. See
GA_2DRenderFuncs::BitBltPattSys D

BitBltPlaneMasked. See
GA_2DRenderFuncs::BitBltPlaneMasked DDC_ChannelsType, 158, 329, 331, 332, 333, 334,

335 BitBltPlaneMaskedBM. See
GA_2DRenderFuncs::BitBltPlaneMaskedBM DDC_DPMSStatesType, 159, 324

DDC_errCode, 45, 46, 121, 161 BitBltPlaneMaskedBuf. See
GA_bufferFuncs::BitBltPlaneMaskedBuf DDC_init, 45

DDC_initExt, 45, 46, 47, 48, 49, 161 BitBltPlaneMaskedLin. See
GA_2DRenderFuncs::BitBltPlaneMaskedLin DDC_readEDID, 46, 47, 48, 49, 124

DDC_SCIFlagsType, 160, 330 BitBltPlaneMaskedSys. See
GA_2DRenderFuncs::BitBltPlaneMaskedSys DDC_writeEDID, 48

SciTech SNAP, Graphics Architecture 831

Index

DestroyClipper. See
GA_clipperFuncs::DestroyClipper

DrawRectLin. See
GA_2DRenderFuncs::DrawRectLin

DiffRegion. See GA_regionFuncs::DiffRegion DrawScanList. See
GA_2DRenderFuncs::DrawScanList DiffRegionRect. See

GA_regionFuncs::DiffRegionRect DrawStippleLineInt. See
GA_2DRenderFuncs::DrawStippleLineInt DisableDirectAccess. See

GA_2DStateFuncs::DisableDirectAccess DrawStyleLineInt. See
GA_2DRenderFuncs::DrawStyleLineInt DPMSdetect. See GA_DPMSFuncs::DPMSdetect

DPMSsetState. See GA_DPMSFuncs::DPMSsetState DrawTrap. See GA_2DRenderFuncs::DrawTrap
DrawBresenhamLine. See

GA_2DRenderFuncs::DrawBresenhamLine
DstTransBlt. See GA_2DRenderFuncs::DstTransBlt
DstTransBltBM. See

GA_2DRenderFuncs::DstTransBltBM DrawBresenhamStippleLine. See
GA_2DRenderFuncs::DrawBresenhamStippleLine DstTransBltBuf. See

GA_bufferFuncs::DstTransBltBuf DrawBresenhamStyleLine. See
GA_2DRenderFuncs::DrawBresenhamStyleLine DstTransBltLin. See

GA_2DRenderFuncs::DstTransBltLin DrawClippedBresenhamLine. See
GA_2DRenderFuncs::DrawClippedBresenhamLine DstTransBltSys. See

GA_2DRenderFuncs::DstTransBltSys DrawClippedBresenhamStippleLine. See
GA_2DRenderFuncs::DrawClippedBresenhamStip
pleLine E DrawClippedBresenhamStyleLine. See
GA_2DRenderFuncs::DrawClippedBresenhamStyl
eLine

EDID_detailedTiming, 162
EDID_displayTypes, 163, 167

DrawClippedLineInt. See
GA_2DRenderFuncs::DrawClippedLineInt

EDID_flags, 164, 167
EDID_maxResCodes, 165, 167

DrawClippedStippleLineInt. See
GA_2DRenderFuncs::DrawClippedStippleLineInt

EDID_parse, 47, 49
EDID_record, 163, 164, 165, 166, 168

DrawClippedStyleLineInt. See
GA_2DRenderFuncs::DrawClippedStyleLineInt

EDID_signalLevels, 167, 168
EDID_standardTiming, 169, 170

DrawColorPattEllipseList. See
GA_2DRenderFuncs::DrawColorPattEllipseList

EDID_timingTypes, 169, 170
EnableDirectAccess. See

GA_2DStateFuncs::EnableDirectAccess DrawColorPattFatEllipseList. See
GA_2DRenderFuncs::DrawColorPattFatEllipseList EnableStereoMode. See

GA_driverFuncs::EnableStereoMode DrawColorPattRect. See
GA_2DRenderFuncs::DrawColorPattRect EndAccess. See GA_cursorFuncs::EndAccess

DrawColorPattScanList. See
GA_2DRenderFuncs::DrawColorPattScanList

EndVideoFrame. See
GA_videoFuncs::EndVideoFrame

DrawColorPattTrap. See
GA_2DRenderFuncs::DrawColorPattTrap

event_t, 598, 603, 769, 771, 825
EVT_allowLEDS, 597

DrawEllipse. See GA_2DRenderFuncs::DrawEllipse EVT_asciiCode, 598, 613, 614, 765, 825
DrawEllipseList. See

GA_2DRenderFuncs::DrawEllipseList
EVT_asciiCodesType, 763
EVT_eventJoyAxisType, 766

DrawFatEllipseList. See
GA_2DRenderFuncs::DrawFatEllipseList

EVT_eventJoyMaskType, 767, 825
EVT_eventMaskType, 768, 771

DrawLineInt. See GA_2DRenderFuncs::DrawLineInt EVT_eventModMaskType, 769, 826
DrawPattEllipseList. See

GA_2DRenderFuncs::DrawPattEllipseList
EVT_eventMouseMaskType, 770, 825
EVT_eventType, 603, 610, 771, 825

DrawPattFatEllipseList. See
GA_2DRenderFuncs::DrawPattFatEllipseList

EVT_flush, 599, 603, 604, 610, 612
EVT_getCodePage, 600, 615

DrawPattRect. See
GA_2DRenderFuncs::DrawPattRect

EVT_getHeartBeatCallback, 601, 616
EVT_getMousePos, 602, 617

DrawPattScanList. See
GA_2DRenderFuncs::DrawPattScanList

EVT_getNext, 599, 601, 603, 604, 610, 611, 612, 616,
618

DrawPattTrap. See
GA_2DRenderFuncs::DrawPattTrap

EVT_halt, 599, 603, 604, 610, 612
EVT_isKeyDown, 605

DrawRect. See GA_2DRenderFuncs::DrawRect EVT_joyIsPresent, 606, 608, 609, 611
DrawRectBuf. See GA_bufferFuncs::DrawRectBuf EVT_joySetCenter, 606, 607, 608, 611
DrawRectExt. See

GA_2DRenderFuncs::DrawRectExt
EVT_joySetLowerRight, 606, 607, 608, 609, 611
EVT_joySetUpperLeft, 607, 608, 609, 611

DrawRectExtSW. See
REF2D_driver::DrawRectExtSW

EVT_masksType, 772
EVT_peekNext, 599, 601, 603, 604, 610, 611, 612,

616, 618

SciTech SNAP, Graphics Architecture 832

Index

EVT_pollJoystick, 611 ClipMonoImageMSBBM, 203, 204, 205, 206, 207,
208, 258, 259, 260, 261, 262, 264 EVT_post, 612

EVT_repeatCount, 598, 613, 614, 825 ClipMonoImageMSBLin, 203, 204, 205, 207, 208,
258, 259, 260, 261, 262, 264 EVT_scanCode, 598, 614, 774, 825

EVT_scanCodesType, 614, 773 ClipMonoImageMSBSys, 203, 204, 205, 206, 207,
208, 258, 259, 260, 261, 262, 264 EVT_setCodePage, 600, 615

EVT_setHeartBeatCallback, 601, 616 DrawBresenhamLine, 209, 234
EVT_setMousePos, 602, 617 DrawBresenhamStippleLine, 211, 245, 294, 295
EVT_setUserEventFilter, 618 DrawBresenhamStyleLine, 213, 246, 296

DrawClippedBresenhamLine, 215, 221
DrawClippedBresenhamStippleLine, 217, 222 F DrawClippedBresenhamStyleLine, 219, 223
DrawClippedLineInt, 216, 218, 220, 221, 222, 223,

234
FlipToBuffer. See GA_bufferFuncs::FlipToBuffer
FlipToStereoBuffer. See

GA_bufferFuncs::FlipToStereoBuffer DrawClippedStippleLineInt, 216, 218, 221, 222
DrawClippedStyleLineInt, 220, 223 ForceSoftwareOnly. See

REF2D_driver::ForceSoftwareOnly DrawColorPattEllipseList, 224, 226, 231, 233, 235,
237 FreeBuffer. See GA_bufferFuncs::FreeBuffer

DrawColorPattFatEllipseList, 224, 225, 231, 233,
235, 237

FreeRegion. See GA_regionFuncs::FreeRegion
FreeVideoBuffer. See

GA_videoFuncs::FreeVideoBuffer DrawColorPattRect, 227, 238, 241, 287, 299, 301
DrawColorPattScanList, 228, 239, 244, 287, 299,

301 G DrawColorPattTrap, 229, 240, 247, 287, 299, 301
DrawEllipse, 202, 230

GA_2DRenderFuncs, 171, 287, 288, 299, 300, 301,
302, 377, 446

DrawEllipseList, 224, 226, 231, 233, 235, 237
DrawFatEllipseList, 224, 226, 231, 232, 235, 237

BitBlt, 172, 174, 175, 180, 182, 184, 186, 188, 189,
190, 194, 196, 197, 198, 200, 201, 248, 250,
252, 254, 255, 256, 266, 268, 270, 272, 274,
276, 278, 280

DrawLineInt, 209, 210, 212, 214, 215, 234, 245,
246

DrawPattEllipseList, 224, 226, 231, 233, 235, 237
DrawPattFatEllipseList, 224, 226, 231, 233, 235,

236 BitBltBM, 172, 173, 189, 201
BitBltColorPatt, 175, 176, 177, 178 DrawPattRect, 227, 238, 241, 288, 300, 302
BitBltColorPattBM, 175, 176, 177, 178 DrawPattScanList, 239, 244, 288, 300, 302
BitBltColorPattLin, 175, 176, 177 DrawPattTrap, 240, 247, 288, 300, 302
BitBltColorPattSys, 175, 176, 177, 178 DrawRect, 227, 238, 241, 242, 243, 366
BitBltFx, 172, 174, 179, 182, 184, 186, 187, 189,

201, 248, 250, 252, 254, 266, 268, 270, 272, 278
DrawRectExt, 241, 242, 243
DrawRectLin, 241, 242, 243

BitBltFxBM, 180, 181, 182, 184, 186, 187, 250,
268

DrawScanList, 228, 229, 239, 240, 244, 247
DrawStippleLineInt, 210, 211, 212, 213, 217, 219,

234, 245, 294, 295 BitBltFxLin, 180, 182, 183, 186, 187, 252, 270
BitBltFxSys, 180, 182, 184, 185, 187, 253, 271 DrawStyleLineInt, 214, 234, 246, 296
BitBltFxTest, 179, 180, 182, 184, 186, 187, 362,

363
DrawTrap, 229, 240, 247
DstTransBlt, 172, 174, 175, 176, 177, 178, 180,

182, 184, 186, 189, 190, 191, 192, 193, 201,
248, 250, 252, 254, 266, 268, 270, 272, 274,
276, 278, 280

BitBltLin, 172, 174, 177, 188, 192
BitBltPatt, 190, 191, 192, 193
BitBltPattBM, 190, 191, 192, 193
BitBltPattLin, 190, 191, 192 DstTransBltBM, 248, 249, 252, 254
BitBltPattSys, 190, 191, 192, 193 DstTransBltLin, 248, 250, 251, 254
BitBltPlaneMasked, 194, 196, 198, 200 DstTransBltSys, 248, 250, 252, 253
BitBltPlaneMaskedBM, 194, 195, 198, 200 GetBitmapBM, 255, 256
BitBltPlaneMaskedLin, 194, 196, 197, 200 GetBitmapSys, 255, 256
BitBltPlaneMaskedSys, 194, 196, 198, 199 GetPixel, 257, 265
BitBltSys, 172, 173, 174, 176, 178, 189, 191, 193,

195, 201
PutMonoImageLSBBM, 203, 204, 205, 206, 207,

208, 258, 259, 260, 261, 262, 264
ClipEllipse, 202, 230 PutMonoImageLSBLin, 203, 204, 205, 206, 207,

208, 259, 260, 261, 262, 264 ClipMonoImageLSBBM, 203, 204, 205, 206, 207,
208, 258, 259, 260, 261, 262, 264 PutMonoImageLSBSys, 203, 204, 205, 206, 207,

208, 258, 259, 260 ClipMonoImageLSBLin, 204, 205, 206, 207, 208,
258, 259, 260, 261, 262, 264 PutMonoImageMSBBM, 203, 204, 205, 206, 207,

208, 258, 259, 260, 261, 262, 264 ClipMonoImageLSBSys, 203, 204, 205, 258, 259,
260, 261, 262, 264

SciTech SNAP, Graphics Architecture 833

Index

PutMonoImageMSBLin, 203, 204, 205, 206, 207,
208, 258, 259, 260, 262, 264

BitBltColorPattBuf, 360, 361, 363, 364, 365, 367,
379, 381

PutMonoImageMSBSys, 203, 204, 205, 206, 207,
208, 258, 259, 260, 261, 262, 263, 264

BitBltFxBuf, 360, 361, 362, 364, 365, 367, 379,
381

PutPixel, 257, 265 BitBltPattBuf, 360, 361, 363, 364, 365, 367, 379,
381 SrcTransBlt, 172, 174, 175, 176, 177, 178, 180,

182, 184, 186, 189, 190, 191, 192, 193, 201,
266, 268, 270, 272, 274, 276, 278, 280

BitBltPlaneMaskedBuf, 360, 361, 364, 365, 367,
379, 381

SrcTransBltBM, 266, 267, 270, 272 DrawRectBuf, 360, 361, 363, 364, 365, 366, 367,
379, 381 SrcTransBltLin, 266, 268, 269, 272

SrcTransBltSys, 266, 268, 270, 271 DstTransBltBuf, 360, 361, 363, 364, 365, 367, 379,
381 StretchBlt, 273, 276, 278, 280

StretchBltBM, 274, 275, 278, 280 FlipToBuffer, 359, 368, 369, 372, 373, 374, 375,
377, 385, 428, 436, 437, 438 StretchBltLin, 274, 276, 277, 280

StretchBltSys, 274, 276, 278, 279 FlipToStereoBuffer, 368, 369, 372, 385, 426, 443
UpdateScreen, 281 FreeBuffer, 359, 370

GA_2DStateFuncs, 282, 446 GetClipper, 371, 378
BuildTranslateVector, 283 GetFlippableBuffer, 359, 373, 374
DisableDirectAccess, 284, 285, 286, 303 GetFlipStatus, 368, 369, 372, 385, 426, 428
EnableDirectAccess, 284, 285, 286, 303 GetPrimaryBuffer, 359, 373, 374, 375, 377
IsIdle, 286, 303 InitBuffers, 375
Set8x8ColorPattern, 227, 228, 229, 287, 288, 290,

293, 297, 299, 300, 301, 302
LockBuffer, 284, 285, 359, 376, 382
SetActiveBuffer, 359, 368, 369, 372, 373, 374,

375, 377, 385, 426, 428, 437, 438, 443 Set8x8MonoPattern, 238, 239, 240, 287, 288, 290,
293, 297, 299, 300, 301, 302 SetClipper, 378

SetAlphaValue, 289, 291 SrcTransBltBuf, 360, 361, 363, 364, 365, 367, 379,
381 SetBackColor, 290, 293, 297

SetBlendFunc, 289, 291 StretchBltBuf, 380
SetDrawBuffer, 292, 585 UnlockBuffer, 284, 285, 376, 382
SetForeColor, 290, 293, 297 UpdateCache, 383, 384
SetLineStipple, 212, 218, 222, 245, 294, 295, 296 UpdateFromCache, 383, 384
SetLineStippleCount, 212, 218, 222, 245, 294, 295,

296
WaitTillFlipped, 368, 369, 372, 385

GA_busType, 386, 424
SetLineStyle, 214, 220, 223, 246, 294, 295, 296 GA_certifyChipInfo, 320, 387
SetMix, 290, 293, 297 GA_CertifyFlagsType, 320
SetPlaneMask, 298 GA_certifyInfo, 387, 388
Use8x8ColorPattern, 227, 228, 229, 287, 288, 299,

300, 301, 302
GA_clipper, 389
GA_clipperFuncs, 390, 447

Use8x8MonoPattern, 238, 239, 240, 287, 288, 299,
300, 301, 302

CreateClipper, 391, 392, 393, 394
DestroyClipper, 391, 392, 393, 394

Use8x8TransColorPattern, 301 GetClipList, 391, 392, 393, 394
Use8x8TransMonoPattern, 300, 302 IsClipListChanged, 391, 392, 393, 394
WaitTillIdle, 284, 285, 286, 303 GA_color, 395

GA_AccelFlagsType, 304 GA_colorCursor, 396, 412
GA_addMode, 50, 51, 53, 55, 58 GA_colorCursor256, 397, 413
GA_addRefresh, 50, 51, 53 GA_colorCursorRGB, 398, 414
GA_AttributeExtFlagsType, 305, 503 GA_colorCursorRGBA, 399, 415
GA_AttributeFlagsType, 306, 421, 501 GA_colorPattern, 400
GA_BitBltFxFlagsType, 310, 354 GA_colorPattern_1, 401
GA_blendFuncType, 291, 350, 354 GA_colorPattern_16, 402
GA_bltFx, 179, 181, 182, 183, 185, 187, 310, 312,

353, 362, 503
GA_colorPattern_24, 403
GA_colorPattern_32, 404

GA_BresenhamLineFlagsType, 209, 211, 213, 215,
217, 219, 313

GA_colorPattern_4, 405
GA_colorPattern_8, 406

GA_buf, 355, 376 GA_computeCRTCTimings, 52, 71
GA_buffer, 292, 357 GA_configInfo, 407
GA_BufferFlagsType, 314, 355, 359, 375 GA_CRTCInfo, 317, 319
GA_bufferFuncs, 292, 358, 447 GA_CRTCInfoFlagsType, 317, 319

AllocBuffer, 359, 370, 373, 374, 375, 377 GA_cursorFuncs, 408, 446
BitBltBuf, 359, 360, 361, 363, 364, 365, 366, 367,

371, 375, 378, 379, 381, 383, 384
BeginAccess, 409, 410, 411, 412, 413, 414, 415,

416, 417, 418, 419

SciTech SNAP, Graphics Architecture 834

Index

EndAccess, 409, 410, 411, 412, 413, 414, 415, 416,
417, 418, 419

GA_errorMsg, 61, 113
GA_funcGroupsType, 87, 446, 493

IsHardwareCursor, 409, 410, 411, 412, 413, 414,
415, 416, 417, 418, 419

GA_getCRTCTimings, 62, 453, 472, 479
GA_getCurrentRef2d, 63, 82

SetColorCursor, 409, 410, 411, 412, 413, 414, 415,
416, 417, 418, 419

GA_getDaysLeft, 64
GA_getDisplaySerialNo, 65

SetColorCursor256, 409, 410, 411, 412, 413, 414,
415, 416, 417, 418, 419

GA_getDisplayUserName, 66
GA_getFakePCIID, 67

SetColorCursorRGB, 409, 410, 411, 412, 413, 414,
415, 416, 417, 418, 419

GA_getGlobalOptions, 68, 89, 93, 104, 449
GA_getInternalName, 69

SetColorCursorRGBA, 409, 410, 411, 412, 413,
414, 415, 416, 417, 418, 419

GA_getLicensedDevices, 70
GA_getMaxRefreshRate, 52, 71

SetCursorPos, 409, 410, 411, 412, 413, 414, 415,
416, 417, 418, 419

SetMonoCursor, 409, 410, 411, 412, 413, 414, 415,
416, 417, 418, 419

SetMonoCursorColor, 409, 410, 411, 412, 413,
414, 415, 416, 417, 418, 419

ShowCursor, 409, 410, 411, 412, 413, 414, 415,
416, 417, 418, 419

GA_delMode, 50, 51, 53, 55, 58
GA_detectPnPMonitor, 54, 72, 463, 481
GA_devCtx, 87, 305, 306, 308, 347, 386, 420, 460,

468, 476, 485, 504
GA_disableVBEMode, 53, 55, 58
GA_disjointRect, 56

GA_getSNAPConfigPath, 73

SwitchPhysicalResolution, 470, 471, 488

GA_isOEMVersion, 76

GA_largeInteger, 489

GA_getParsedEDID, 54, 72

GA_globalOptions, 325, 448
GA_initFuncs, 446, 450

AlignLinearBuffer, 292, 451
GetActiveHead, 452, 464, 474
GetCertifyInfo, 454, 457
GetClosestPixelClock, 455, 477, 487
GetConfigInfo, 454, 457
GetCRTCTimings, 453, 472, 475, 479
GetCurrentRefreshRate, 453, 458, 459, 461, 468,

469, 472, 479
GetCurrentVideoModeInfo, 458, 459, 461, 468,

469
GA_DPMSFuncs, 322, 446 GetCustomVideoModeInfo, 456, 458, 459, 460,

461, 467, 468, 469, 476, 477, 487 DPMSdetect, 323, 324
DPMSsetState, 323, 324 GetCustomVideoModeInfoExt, 458, 459, 461, 468,

469 GA_driverFuncs, 425, 446
EnableStereoMode, 426, 443 GetDisplayOutput, 462
GetCurrentScanLine, 427 GetMonitorInfo, 463, 481
GetDisplayStartStatus, 426, 428, 436, 437, 438,

443
GetNumberOfHeads, 452, 464, 474
GetOptions, 465, 482

GetGammaCorrectData, 429, 430, 431, 432, 439,
440, 441, 442

GetUniqueFilename, 466
GetVideoMode, 459, 467

GetGammaCorrectDataExt, 429, 430, 431, 432,
439, 440, 441, 442

GetVideoModeInfo, 456, 459, 460, 461, 467, 468,
469, 474, 477, 480, 486, 487

GetPaletteData, 338, 429, 430, 431, 432, 439, 440,
441, 442

GetVideoModeInfoExt, 458, 459, 461, 468, 469
PerformDisplaySwitch, 470, 471, 488, 581

GetPaletteDataExt, 429, 430, 431, 432, 439, 440,
441, 442

PollForDisplaySwitch, 470, 471, 488, 581
SaveCRTCTimings, 472, 475

GetVSyncWidth, 433, 444 SaveRestoreState, 473
IsVSync, 434, 445 SetActiveHead, 452, 464, 474
SetBank, 435 SetCRTCTimings, 453, 472, 475, 479
SetDisplayStart, 428, 436, 438, 443 SetCustomVideoMode, 456, 460, 476, 487
SetDisplayStartXY, 437, 438 SetDisplayOutput, 477, 478, 487
SetGammaCorrectData, 429, 430, 431, 432, 439,

440, 441, 442
SetGlobalRefresh, 453, 472, 479
SetModeProfile, 480

SetGammaCorrectDataExt, 429, 430, 431, 432,
439, 440, 441, 442

SetMonitorInfo, 463, 481
SetOptions, 465, 482

SetPaletteData, 341, 429, 430, 431, 432, 439, 440,
441, 442

SetRef2dPointer, 483, 484
SetSoftwareRenderFuncs, 483, 484

SetPaletteDataExt, 429, 430, 431, 432, 439, 440,
441, 442

SetVideoMode, 456, 458, 459, 460, 461, 467, 468,
469, 474, 476, 477, 485

SetStereoDisplayStart, 426, 437, 438, 443
SetVSyncWidth, 433, 444 GA_insetRect, 74, 84
WaitVSync, 434, 445 GA_isLiteVersion, 75

GA_emptyRect, 56, 57
GA_enableVBEMode, 50, 55, 58 GA_isSharedDriverLoaded, 77, 79
GA_enumerateDevices, 59 GA_isSimpleRegion, 78
GA_equalRect, 56, 60

SciTech SNAP, Graphics Architecture 835

Index

GA_layout, 490
GA_LCDUseBIOSFlagsType, 325
GA_loadDriver, 59, 79, 80, 101, 105, 113, 116
GA_loaderFuncs, 491

InitDriver, 492, 494, 495
QueryFunctions, 492, 493, 494, 495
UnloadDriver, 492, 494, 495

GA_loadInGUI, 80
GA_loadModeProfile, 81, 94
GA_loadRef2d, 63, 82, 154
GA_loadRegionMgr, 83, 118
GA_MakeVisibleBufferFlagsType, 326, 368, 369
GA_mixCodesType, 172, 173, 188, 201, 242, 243,

248, 249, 251, 253, 255, 256, 266, 267, 269, 271,
273, 275, 277, 279, 297, 360, 367, 379, 380, 496

GA_mode, 498
GA_modeFlagsType, 476, 485, 486, 499

GA_monitor, 507, 508

GA_multiHeadType, 452, 474, 510

GA_OutputFlagsType, 327, 461, 469, 478

GA_pattern, 519

GA_ptInRect, 86

GA_recMode, 523

GA_regionFuncs, 447, 526

CopyRegion, 527, 528, 529, 532

UnionRegionOfs, 543, 544, 545

GA_softStereoInit, 106, 108

UnionRegion, 78, 530, 531, 533, 534, 535, 536,
537, 538, 540, 541, 542, 543, 544, 545

UnionRegionRect, 543, 544, 545
GA_registerLicense, 90
GA_restoreCRTCTimings, 62, 91, 92, 102, 103, 453,

472, 479
GA_rop3CodesType, 175, 176, 177, 178, 190, 191,

192, 193, 361, 364, 546
GA_saveCRTCTimings, 62, 91, 92, 94, 96, 102, 103,

453, 472, 479
GA_saveGlobalOptions, 68, 89, 93, 104
GA_saveModeProfile, 81, 91, 92, 94, 96, 480
GA_saveMonitorInfo, 95, 463, 481
GA_saveOptions, 91, 92, 94, 96, 465, 482
GA_SCIFuncs, 328, 446

SCIbegin, 329, 330, 331, 332, 333, 334, 335
GA_modeInfo, 183, 184, 187, 189, 198, 243, 251,

252, 259, 262, 269, 270, 277, 278, 292, 305, 306,
308, 310, 312, 319, 342, 345, 357, 395, 418, 421,
426, 436, 443, 451, 459, 460, 461, 468, 469, 486,
500, 556

SCIdetect, 329, 330, 331, 332, 333, 334, 335
SCIend, 329, 330, 331, 332, 333, 334, 335
SCIreadSCL, 329, 330, 331, 332, 333, 334, 335
SCIreadSDA, 329, 330, 331, 332, 333, 334, 335
SCIwriteSCL, 329, 330, 331, 332, 333, 334, 335

GA_modeProfile, 506 SCIwriteSDA, 329, 330, 331, 332, 333, 334, 335
GA_sectRect, 56, 97, 98, 99, 100, 114, 115

GA_monitorFlagsType, 508 GA_sectRectCoord, 97, 98, 99
GA_monoCursor, 417, 509 GA_sectRectFast, 97, 99

GA_sectRectFastCoord, 98, 100
GA_offsetRect, 74, 84 GA_segment, 551
GA_options, 510, 511 GA_setActiveDevice, 79, 101

GA_setCRTCTimings, 102, 453, 472, 479
GA_palette, 418, 429, 431, 439, 441, 517 GA_setDefaultRefresh, 103, 453, 472, 479
GA_paletteExt, 432, 442, 518 GA_setGlobalOptions, 68, 89, 93, 104

GA_setMinimumDriverVersion, 105
GA_pixelFormat, 520 GA_softStereoExit, 106, 108, 109
GA_programMTRRegisters, 85 GA_softStereoGetFlipStatus, 107, 110, 111, 112

GA_queryFunctions, 87, 155, 171, 282, 322, 328, 337,
358, 390, 408, 425, 450, 494, 526, 555, 578, 582

GA_softStereoOff, 109, 110
GA_softStereoOn, 108, 109, 110

GA_readGlobalOptions, 89 GA_softStereoScheduleFlip, 107, 110, 111, 112
GA_softStereoWaitTillFlipped, 107, 111, 112

GA_rect, 524 GA_span, 552
GA_region, 525 GA_status, 61, 93, 94, 95, 96, 113

GA_stipple, 553
ClearRegion, 527, 528, 529 GA_trap, 229, 240, 247, 554
CopyIntoRegion, 528, 529 GA_TVParams, 336

GA_unionRect, 56, 97, 98, 99, 100, 114
DiffRegion, 78, 530, 531, 533, 534, 535, 536, 537,

538, 540, 541, 542, 543, 544, 545
GA_unionRectCoord, 114, 115
GA_unloadDriver, 79, 82, 116, 117

DiffRegionRect, 530, 531 GA_unloadRef2d, 63, 82, 117
FreeRegion, 527, 528, 529, 532, 535, 536 GA_unloadRegionMgr, 83, 118
IsEmptyRegion, 533, 534 GA_useDoubleScan, 119
IsEqualRegion, 533, 534 GA_VBEFuncs, 337, 447
NewRectRegion, 535, 536 GetPaletteData, 338, 339, 340, 341
NewRegion, 527, 528, 529, 532, 535, 536 Set8BitDAC, 338, 339, 340, 341
OffsetRegion, 533, 534, 537 SetBytesPerLine, 338, 339, 340, 341
OptimizeRegion, 538 SetPaletteData, 338, 339, 340, 341
PtInRegion, 533, 534, 539 GA_VideoBufferFormatsType, 342, 556
SectRegion, 78, 530, 531, 533, 534, 535, 536, 537,

538, 540, 541, 542, 543, 544, 545
GA_videoFuncs, 446, 555

AllocVideoBuffer, 556, 557, 558, 559, 560, 561
SectRegionRect, 540, 541 EndVideoFrame, 556, 557, 558, 559, 560, 561
TraverseRegion, 542 FreeVideoBuffer, 556, 557, 558, 559, 560, 561

SetVideoColorKey, 556, 557, 558, 559, 560, 561

SciTech SNAP, Graphics Architecture 836

Index

I SetVideoOutput, 556, 557, 558, 559, 560, 561
StartVideoFrame, 556, 557, 558, 559, 560, 561

GA_videoInf, 342, 345, 503, 562 InitBuffers. See GA_bufferFuncs::InitBuffers
GA_VideoOutputFlagsType, 345, 560 InitDriver. See GA_loaderFuncs::InitDriver
GA_WorkAroundsFlagsType, 347 IsClipListChanged. See

GA_clipperFuncs::IsClipListChanged GetActiveHead. See GA_initFuncs::GetActiveHead
GetBitmapBM. See

GA_2DRenderFuncs::GetBitmapBM
IsEmptyRegion. See

GA_regionFuncs::IsEmptyRegion
GetBitmapSys. See

GA_2DRenderFuncs::GetBitmapSys
IsEqualRegion. See GA_regionFuncs::IsEqualRegion
IsHardwareCursor. See

GA_cursorFuncs::IsHardwareCursor GetCertifyInfo. See GA_initFuncs::GetCertifyInfo
GetClipList. See GA_clipperFuncs::GetClipList IsIdle. See GA_2DStateFuncs::IsIdle
GetClipper. See GA_bufferFuncs::GetClipper IsVSync. See GA_driverFuncs::IsVSync
GetClosestPixelClock. See

GA_initFuncs::GetClosestPixelClock L GetConfigInfo. See GA_initFuncs::GetConfigInfo
GetCRTCTimings. See

GA_initFuncs::GetCRTCTimings LockBuffer. See GA_bufferFuncs::LockBuffer
LZTimerCount, 619, 624

GetCurrentRefreshRate. See
GA_initFuncs::GetCurrentRefreshRate LZTimerCountExt, 619, 620, 622, 624, 626

LZTimerLap, 621, 626
GetCurrentScanLine. See

GA_driverFuncs::GetCurrentScanLine LZTimerLapExt, 620, 621, 622, 624, 626
LZTimerObject, 776

GetCurrentVideoModeInfo. See
GA_initFuncs::GetCurrentVideoModeInfo LZTimerOff, 620, 623, 626

LZTimerOffExt, 620, 622, 623, 624, 626
GetCustomVideoModeInfo. See

GA_initFuncs::GetCustomVideoModeInfo LZTimerOn, 620, 622, 625
LZTimerOnExt, 620, 622, 624, 625, 626

GetCustomVideoModeInfoExt. See
GA_initFuncs::GetCustomVideoModeInfoExt

M GetDisplayOutput. See
GA_initFuncs::GetDisplayOutput

MCS_begin, 120, 123, 125 GetDisplayStartStatus. See
GA_driverFuncs::GetDisplayStartStatus

GetGammaCorrectData. See
GA_driverFuncs::GetGammaCorrectData

MCS_beginExt, 120, 121
MCS_controlsType, 122, 125, 126, 127, 130, 131,

133, 134, 563
GetFlippableBuffer. See

GA_bufferFuncs::GetFlippableBuffer
MCS_enableControl, 122, 125, 126, 127, 130, 131,

132, 133, 134
GetFlipStatus. See GA_bufferFuncs::GetFlipStatus

MCS_end, 121, 123, 125
MCS_getCapabilitiesString, 124 GetGammaCorrectDataExt. See

GA_driverFuncs::GetGammaCorrectDataExt MCS_getControlMax, 125
MCS_getControlValue, 122, 125, 126, 127, 130, 131,

132, 133, 134
GetMonitorInfo. See GA_initFuncs::GetMonitorInfo
GetNumberOfHeads. See

GA_initFuncs::GetNumberOfHeads MCS_getControlValues, 126, 127, 134
MCS_getSelfTestReport, 128 GetOptions. See GA_initFuncs::GetOptions
MCS_getTimingReport, 129, 565 GetPaletteData. See GA_driverFuncs::GetPaletteData.

See GA_VBEFuncs::GetPaletteData MCS_isControlSupported, 122, 125, 126, 127, 130,
131, 132, 133, 134 GetPaletteDataExt. See

GA_driverFuncs::GetPaletteDataExt MCS_polarityFlagsType, 129, 565
MCS_resetControl, 122, 125, 126, 127, 130, 131, 132,

133, 134
GetPixel. See GA_2DRenderFuncs::GetPixel
GetPrimaryBuffer. See

GA_bufferFuncs::GetPrimaryBuffer MCS_saveCurrentSettings, 122, 125, 126, 127, 130,
131, 132, 133, 134 GetUniqueFilename. See

GA_initFuncs::GetUniqueFilename MCS_setControlValue, 122, 125, 126, 127, 130, 131,
132, 133, 134 GetVideoMode. See GA_initFuncs::GetVideoMode

MCS_setControlValues, 126, 127, 133, 134 GetVideoModeInfo. See
GA_initFuncs::GetVideoModeInfo MDBX_close, 135, 144

MDBX_errCodes, 566 GetVideoModeInfoExt. See
GA_initFuncs::GetVideoModeInfoExt MDBX_first, 136, 137, 141, 142, 143, 145, 146

MDBX_flush, 137, 141, 146 GetVSyncWidth. See
GA_driverFuncs::GetVSyncWidth MDBX_getErrCode, 138, 139

MDBX_getErrorMsg, 138, 139
MDBX_importINF, 140
MDBX_insert, 137, 141, 146

SciTech SNAP, Graphics Architecture 837

Index

MDBX_last, 136, 142, 143, 145 PE_loadLibraryMGL, 153, 638
PerformDisplaySwitch. See

GA_initFuncs::PerformDisplaySwitch
MDBX_next, 136, 142, 143, 145
MDBX_open, 135, 144
MDBX_prev, 136, 142, 143, 145 PM_agpCommitPhysical, 639, 641, 644
MDBX_update, 137, 141, 146 PM_agpExit, 640, 642

PM_agpFreePhysical, 639, 641
PM_agpInit, 640, 642 N PM_agpMemoryType, 808

N_errorType, 492, 567
N_fix32, 568
N_flt32, 569
N_int16, 570
N_int32, 571
N_int8, 572
N_physAddr, 573

PCIClassTypes, 783

PM_agpReservePhysical, 639, 642, 643, 644, 808

PM_freePage, 646, 665

PM_getPhysicalAddrRange, 683, 684

PM_agpReleasePhysical, 643, 644

PM_allocLockedMem, 645, 664
PM_allocPage, 646, 665
PM_allocRealSeg, 647, 650, 667, 700, 701, 712
PM_backslash, 648
PM_blockUntilTimeout, 649
PM_calloc, 651, 662, 709, 718, 749 N_uint16, 574
PM_callRealMode, 650, 700, 701 N_uint32, 575
PM_closeConsole, 652, 673, 714, 721, 727, 740 N_uint8, 576
PM_doSuspendApp, 653 NewRectRegion. See

GA_regionFuncs::NewRectRegion PM_enableWriteCombine, 654, 711, 798, 799
PM_enumWriteCombine, 655 NewRegion. See GA_regionFuncs::NewRegion
PM_enumWriteCombine_t, 809
PM_fatalCleanupHandler, 810 O PM_fatalError, 656, 730
PM_findBPD, 657, 734

OffsetRegion. See GA_regionFuncs::OffsetRegion PM_findClose, 658, 659, 660
OptimizeRegion. See

GA_regionFuncs::OptimizeRegion
PM_findData, 800, 811
PM_findFirstFile, 658, 659, 660
PM_findNextFile, 658, 659, 660

P PM_flushTLB, 661
PM_free, 651, 662, 709, 718, 749

PCI_accessReg, 627, 628, 629, 630, 631, 780 PM_freeLibrary, 663, 685, 705
PCI_enumerate, 627, 628, 629, 630, 631 PM_freeLockedMem, 645, 664
PCI_getNumDevices, 627, 628, 629, 630, 631
PCI_readRegBlock, 627, 628, 629, 630, 631 PM_freePhysicalAddr, 666, 711
PCI_writeRegBlock, 627, 628, 629, 630, 631 PM_freeRealSeg, 647, 667
PCIAccessRegFlags, 627, 780 PM_freeShared, 668, 710
PCIAGPCapability, 777 PM_getA0000Pointer, 669
PCIAGPCommand, 778 PM_getBIOSPointer, 670
PCIAGPStatus, 779 PM_getBootDrive, 671
PCICapsHeader, 781 PM_getch, 691
PCICapsType, 781, 782 PM_getCOMPort, 672

PM_getConsoleStateSize, 652, 673, 714, 721, 727
PCICommandFlags, 784, 785 PM_getCurrentPath, 674, 692
PCIDeviceInfo, 627, 628, 784, 785, 787, 788, 789,

791, 793
PM_getdcwd, 674, 692
PM_getDirectDrawWindow, 675, 704

PCIHeaderTypeFlags, 786, 787 PM_getFileAttr, 676, 731
PCIslot, 627, 794 PM_getFileTime, 677, 732
PCIStatusFlags, 785, 788 PM_getIOPL, 678, 733
PCIType0Info, 789 PM_getLPTPort, 679
PCIType1Info, 791 PM_getMachineName, 680
PCIType2Info, 793 PM_getOSName, 681, 682
PE_errorCodes, 577, 795 PM_getOSType, 681, 682
PE_freeLibrary, 147, 150, 151, 152, 153, 632, 635,

636, 637, 638
PM_getPhysicalAddr, 683, 684, 711

PE_getError, 148, 633 PM_getProcAddress, 663, 685, 705
PE_getFileSize, 149, 634 PM_getSNAPConfigPath, 686, 687
PE_getProcAddress, 147, 148, 150, 151, 152, 153,

632, 633, 635, 636, 637, 638
PM_getSNAPPath, 686, 687
PM_getUniqueID, 688

PE_loadLibrary, 147, 148, 150, 151, 152, 153, 632,
633, 635, 636, 637, 638

PM_getVESABuf, 689
PM_getVGAStateSize, 690, 724, 728

PE_loadLibraryExt, 152, 637

SciTech SNAP, Graphics Architecture 838

Index

PM_haveBIOSAccess, 647, 650, 667, 670, 693, 700,
701, 712

PM_stopService, 698, 699, 719, 743, 745
PM_suspendApp_cb, 818

PM_HWND, 805 PM_suspendAppCodesType, 816
PM_init, 694 PM_suspendAppFlagsType, 817
PM_inpb, 695, 696, 697, 715, 716, 717 PM_time, 819
PM_inpd, 695, 696, 697 PM_unloadDirectDraw, 675, 704, 746
PM_inpw, 695, 696, 697 PM_unlockCodePages, 706, 747
PM_installService, 698, 699 PM_unlockDataPages, 707, 748
PM_installServiceExt, 698, 699, 719, 743, 745 PM_useLocalMalloc, 651, 662, 709, 718, 749
PM_int86, 650, 693, 700, 701 PMBYTEREGS, 796
PM_int86x, 650, 700, 701 PMDWORDREGS, 797
PM_intHandler, 812 PMEnableWriteCombineErrors, 798
PM_IRQHandle, 806 PMEnableWriteCombineFlags, 654, 799
PM_irqHandler, 813 PMFileFlagsType, 676, 731, 800
PM_isSDDActive, 702 PMREGS, 801, 820
PM_kbhit, 703 PMSplitPathFlags, 742, 803
PM_loadDirectDraw, 675, 704, 746 PMSREGS, 802, 821
PM_loadLibrary, 663, 685, 705 PMWORDREGS, 804

PollForDisplaySwitch. See
GA_initFuncs::PollForDisplaySwitch

PM_lockCodePages, 618, 706, 707, 747
PM_lockDataPages, 706, 707, 748

PostSwitchPhysicalResolution. See
REF2D_driver::PostSwitchPhysicalResolution

PM_lockHandle, 814
PM_makepath, 708

PtInRegion. See GA_regionFuncs::PtInRegion PM_malloc, 651, 662, 709, 718, 749
PutMonoImageLSBBM. See

GA_2DRenderFuncs::PutMonoImageLSBBM
PM_mallocShared, 668, 710
PM_mapPhysicalAddr, 666, 683, 684, 711

PutMonoImageLSBLin. See
GA_2DRenderFuncs::PutMonoImageLSBLin

PM_mapRealPointer, 647, 650, 667, 700, 701, 712
PM_mkdir, 713, 725

PutMonoImageLSBSys. See
GA_2DRenderFuncs::PutMonoImageLSBSys

PM_MODULE, 807
PM_openConsole, 652, 673, 714, 721, 727, 740

PutMonoImageMSBBM. See
GA_2DRenderFuncs::PutMonoImageMSBBM

PM_outpb, 695, 696, 697, 715, 716, 717
PM_outpd, 715, 716, 717

PutMonoImageMSBLin. See
GA_2DRenderFuncs::PutMonoImageMSBLin

PM_outpw, 715, 716, 717
PM_physAddr, 815

PutMonoImageMSBSys. See
GA_2DRenderFuncs::PutMonoImageMSBSys

PM_realloc, 651, 662, 709, 718, 749
PM_removeService, 698, 699, 719, 743, 745

PutPixel. See GA_2DRenderFuncs::PutPixel PM_restartRealTimeClock, 720, 738, 739, 744
PM_restoreConsoleState, 652, 673, 714, 721, 727
PM_restoreRealTimeClockHandler, 720, 722, 738,

739, 744 Q
PM_restoreThreadPriority, 723, 735 QueryFunctions. See REF2D_driver::QueryFunctions.

See GA_loaderFuncs::QueryFunctions PM_restoreVGAState, 690, 724, 728
PM_rmdir, 713, 725
PM_runningInAWindow, 726 R PM_saveConsoleState, 652, 673, 714, 721, 727
PM_saveVGAState, 690, 724, 728

REF2D_driver, 155, 578 PM_setDebugLog, 729
DrawRectExtSW, 579 PM_setFatalErrorCleanup, 656, 730
ForceSoftwareOnly, 580 PM_setFileAttr, 676, 731, 800, 811
PostSwitchPhysicalResolution, 470, 581 PM_setFileTime, 677, 732, 819
QueryFunctions, 582 PM_setIOPL, 678, 733
RotateBitmap, 583 PM_setLocalBPDPath, 657, 734
SetColorCompareMask, 584 PM_setMaxThreadPriority, 735
SetDrawBuffer, 292, 585, 586 PM_setOSCursorLocation, 736
SetDrawSurface, 585, 586 PM_setOSScreenWidth, 737

REF2D_loadDriver, 154, 156, 578 PM_setRealTimeClockFrequency, 720, 738, 739, 744
REF2D_queryFunctions, 88, 155, 582 PM_setRealTimeClockHandler, 720, 722, 738, 739,

744 REF2D_unloadDriver, 154, 156
RMREGS, 820 PM_setSuspendAppCallback, 673, 714, 721, 727, 740
RMSREGS, 821 PM_sleep, 649, 741

PM_stopRealTimeClock, 720, 738, 739, 744

RotateBitmap. See REF2D_driver::RotateBitmap PM_splitpath, 742, 803
PM_startService, 698, 699, 719, 743, 745

SciTech SNAP, Graphics Architecture 839

Index

SetLineStipple. See
GA_2DStateFuncs::SetLineStipple S

SetLineStippleCount. See
GA_2DStateFuncs::SetLineStippleCount

SaveCRTCTimings. See
GA_initFuncs::SaveCRTCTimings

SetLineStyle. See GA_2DStateFuncs::SetLineStyle SaveRestoreState. See
GA_initFuncs::SaveRestoreState SetMix. See GA_2DStateFuncs::SetMix

SetModeProfile. See GA_initFuncs::SetModeProfile SCIbegin. See GA_SCIFuncs::SCIbegin
SetMonitorInfo. See GA_initFuncs::SetMonitorInfo SCIdetect. See GA_SCIFuncs::SCIdetect
SetMonoCursor. See

GA_cursorFuncs::SetMonoCursor
SCIend. See GA_SCIFuncs::SCIend
SCIreadSCL. See GA_SCIFuncs::SCIreadSCL

SetMonoCursorColor. See
GA_cursorFuncs::SetMonoCursorColor

SCIreadSDA. See GA_SCIFuncs::SCIreadSDA
SCIwriteSCL. See GA_SCIFuncs::SCIwriteSCL

SetOptions. See GA_initFuncs::SetOptions SCIwriteSDA. See GA_SCIFuncs::SCIwriteSDA
SetPaletteData. See GA_driverFuncs::SetPaletteData.
See GA_VBEFuncs::SetPaletteData

SectRegion. See GA_regionFuncs::SectRegion
SectRegionRect. See

GA_regionFuncs::SectRegionRect SetPaletteDataExt. See
GA_driverFuncs::SetPaletteDataExt Set8BitDAC. See GA_VBEFuncs::Set8BitDAC

SetPlaneMask. See GA_2DStateFuncs::SetPlaneMask Set8x8ColorPattern. See
GA_2DStateFuncs::Set8x8ColorPattern SetRef2dPointer. See GA_initFuncs::SetRef2dPointer

SetSoftwareRenderFuncs. See
GA_initFuncs::SetSoftwareRenderFuncs

Set8x8MonoPattern. See
GA_2DStateFuncs::Set8x8MonoPattern

SetStereoDisplayStart. See
GA_driverFuncs::SetStereoDisplayStart

SetActiveBuffer. See
GA_bufferFuncs::SetActiveBuffer

SetVideoColorKey. See
GA_videoFuncs::SetVideoColorKey

SetActiveHead. See GA_initFuncs::SetActiveHead
SetAlphaValue. See

GA_2DStateFuncs::SetAlphaValue SetVideoMode. See GA_initFuncs::SetVideoMode
SetVideoOutput. See

GA_videoFuncs::SetVideoOutput
SetBackColor. See GA_2DStateFuncs::SetBackColor
SetBank. See GA_driverFuncs::SetBank

SetVSyncWidth. See
GA_driverFuncs::SetVSyncWidth

SetBlendFunc. See GA_2DStateFuncs::SetBlendFunc
SetBytesPerLine. See

GA_VBEFuncs::SetBytesPerLine ShowCursor. See GA_cursorFuncs::ShowCursor
SrcTransBlt. See GA_2DRenderFuncs::SrcTransBlt SetClipper. See GA_bufferFuncs::SetClipper
SrcTransBltBM. See

GA_2DRenderFuncs::SrcTransBltBM
SetColorCompareMask. See

REF2D_driver::SetColorCompareMask
SrcTransBltBuf. See

GA_bufferFuncs::SrcTransBltBuf
SetColorCursor. See

GA_cursorFuncs::SetColorCursor
SrcTransBltLin. See

GA_2DRenderFuncs::SrcTransBltLin
SetColorCursor256. See

GA_cursorFuncs::SetColorCursor256
SrcTransBltSys. See

GA_2DRenderFuncs::SrcTransBltSys
SetColorCursorRGB. See

GA_cursorFuncs::SetColorCursorRGB
StartVideoFrame. See

GA_videoFuncs::StartVideoFrame
SetColorCursorRGBA. See

GA_cursorFuncs::SetColorCursorRGBA
StretchBlt. See GA_2DRenderFuncs::StretchBlt SetCRTCTimings. See

GA_initFuncs::SetCRTCTimings StretchBltBM. See
GA_2DRenderFuncs::StretchBltBM SetCursorPos. See GA_cursorFuncs::SetCursorPos

StretchBltBuf. See GA_bufferFuncs::StretchBltBuf SetCustomVideoMode. See
GA_initFuncs::SetCustomVideoMode StretchBltLin. See

GA_2DRenderFuncs::StretchBltLin SetDisplayOutput. See
GA_initFuncs::SetDisplayOutput StretchBltSys. See

GA_2DRenderFuncs::StretchBltSys SetDisplayStart. See GA_driverFuncs::SetDisplayStart
SwitchPhysicalResolution. See

GA_initFuncs::SwitchPhysicalResolution
SetDisplayStartXY. See

GA_driverFuncs::SetDisplayStartXY
SetDrawBuffer. See REF2D_driver::SetDrawBuffer.
See GA_2DStateFuncs::SetDrawBuffer T SetDrawSurface. See REF2D_driver::SetDrawSurface

SetForeColor. See GA_2DStateFuncs::SetForeColor TraverseRegion. See
GA_regionFuncs::TraverseRegion SetGammaCorrectData. See

GA_driverFuncs::SetGammaCorrectData
SetGammaCorrectDataExt. See

GA_driverFuncs::SetGammaCorrectDataExt U
SetGlobalRefresh. See

GA_initFuncs::SetGlobalRefresh ULZElapsedTime, 750, 751, 755, 756
ULZReadTime, 750, 751, 755, 756

SciTech SNAP, Graphics Architecture 840

Index

ULZTimerCount, 752, 753, 754, 755, 756
ULZTimerLap, 752, 753, 754, 755
ULZTimerOff, 752, 753, 754, 755
ULZTimerOn, 752, 753, 754, 755
ULZTimerResolution, 750, 751, 752, 755, 756
UnionRegion. See GA_regionFuncs::UnionRegion
UnionRegionOfs. See

GA_regionFuncs::UnionRegionOfs
UnionRegionRect. See

GA_regionFuncs::UnionRegionRect
UnloadDriver. See GA_loaderFuncs::UnloadDriver
UnlockBuffer. See GA_bufferFuncs::UnlockBuffer
UpdateCache. See GA_bufferFuncs::UpdateCache
UpdateFromCache. See

GA_bufferFuncs::UpdateFromCache
UpdateScreen. See

GA_2DRenderFuncs::UpdateScreen
Use8x8ColorPattern. See

GA_2DStateFuncs::Use8x8ColorPattern

Use8x8MonoPattern. See
GA_2DStateFuncs::Use8x8MonoPattern

Use8x8TransColorPattern. See
GA_2DStateFuncs::Use8x8TransColorPattern

Use8x8TransMonoPattern. See
GA_2DStateFuncs::Use8x8TransMonoPattern

W
WaitTillFlipped. See

GA_bufferFuncs::WaitTillFlipped
WaitTillIdle. See GA_2DStateFuncs::WaitTillIdle
WaitVSync. See GA_driverFuncs::WaitVSync

Z
ZTimerInit, 757
ZTimerInitExt, 757, 758

SciTech SNAP, Graphics Architecture 841

	Introduction
	What is SciTech SNAP?
	What is SciTech SNAP Graphics Architecture?

	Installing SciTech SNAP Graphics
	Downloading and Installing SciTech SNAP Graphics
	Makefile Utilities Configuration
	DOS/Windows hosted tools (start-sdk.bat)
	Win32 hosted tools (start-sdk.bat)
	Windows hosted tools for RTTarget-32 (start-sdk.bat)
	OS/2 hosted tools (start-sdk.cmd)
	Linux hosted tools (start-sdk.linux)
	QNX hosted tools (start-sdk.qnx)

	Compiling SciTech SNAP Graphics
	Compiling release and debug builds
	Compiling the sample programs
	Setting up Your Compiler Configuration

	Using the Makefile Utilities
	Standard Makefile Targets
	Standard Makefile Options

	CauseWay DOS Extender Support
	Connecting with Perforce
	Download a Perforce Client
	Setting up your environment for anonymous access
	Setting up your client mapping
	Syncing up for the first time
	Using Perforce from the command line

	Programming with SNAP Graphics
	Loading and Initializing SciTech SNAP Graphics
	Runtime Library Standard Locations
	Enumerating Installed Devices and Loading a Driver
	Locating and Calling Device Driver Functions
	Querying Device Configuration Information

	Working With Display Modes
	Finding Available Display Modes
	Refresh Rate Control
	Using Custom Display Modes

	2D Coordinate System
	Multi Buffering
	Accessing Offscreen Video Memory
	Virtual Buffer Scrolling
	Palette Programming During Double Buffering
	Integer Coordinates
	Color Values

	Direct Framebuffer Access
	Hardware Triple Buffering
	Using the Buffer Manager
	Hardware Video Overlay Functions
	Stereoscopic Liquid Crystal Shutter Glasses
	Refresh rates and stereoscopic imaging
	Software driven display start address swapping

	Developing for Maximum Compatibility
	Support Both 15-bit and 16-bits Per Pixel Modes
	Support Both 24-bit and 32-bits per Pixel Modes
	Do Not Assume Support for Double Scanned Modes

	Developing for Specific Hardware in Embedded Systems
	Customize SNAP Graphics configuration files for run-time image
	Optimize SNAP Graphics options for fastest loading time

	Graphics Device Driver Overview
	Overview of Global Functions
	Driver Loading and Initialization Functions
	Display Mode Management Functions
	Rectangle Arithmetic Functions
	Monitor Detection Functions
	Monitor Database Functions
	Monitor Command Set Functions

	Overview of Queried Function Groups
	Display Driver Initialization Functions
	Device Driver Control Functions
	2D Rendering State Functions
	2D Drawing Functions
	Buffer Manager Functions
	Complex Region Management Functions
	Hardware Video Overlay Functions
	Hardware Cursor Functions

	Graphics Device Driver Reference
	PM Library Reference
	Index

